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random string

which of these strings is random?

00000000000000000000000000000000000000000000000000

01010101010101010101010101010101010101010101010101

00111110010011011001110110000011101010110111100011

10101101111110000101010001011000101000101011101101

11001001000011111101101010100010001000010110100011

Explain your guess!

A.R. Different Views of Information 2 / 20



random string

which of these strings is random?

00000000000000000000000000000000000000000000000000

01010101010101010101010101010101010101010101010101

00111110010011011001110110000011101010110111100011

e ≈ 10.101101111110000101010001011000101000101011101101

π ≈ 11.001001000011111101101010100010001000010110100011

Explain your guess!
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measure of information: Kolmogorov’s approach

Informal Definition: Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|y) = min{|p| : program p produced x given y}

Proof.
Idea: Let U be a universal machine that can simulate any other machine V . . .

In what follows we fix U and let C(x) := CU(x)
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measure of information: Kolmogorov’s approach

Formal Definition: Kolmogorov complexity (with a decompressor U)

CU(x) = min{|p| : U(p) = x}

Theorem

There exists a (computable) U such that for every other V and all strings x,

CU(x) ≤ CV (x) + O(1).

Proof.
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|y) = min{|p| : program p produced x given y}

simple properties:

C(x) ≤ |x|+ O(1),

C(xx) ≤ |x|+ O(1),

C(F (x)) ≤ C(x) + O(1) for any computable F ,

for every n there exists a string of length n with complexity at least n,

there exists a λ ≥ s.t. for every n, at least 99% of strings of length n satisfy

n − λ ≤ C(x) ≤ n + λ.

if there is an algorithm that for every input n produces a list of strings Sn,

[binary expansion of n] 7→ alg 7→ [list of elements of Sn]

then
▶ for every x ∈ Sn we have C(x) ≤ logCard(Sn) + O(log n)
▶ for most x ∈ Sn we have C(x) ≥ logCard(Sn)− O(1)
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|y) = min{|p| : program p produced x given y}

another simple property:

if a bit string x contains p0n zeros and p1n ones, then

C(x) ≤ log n!
(p0n)!·(p1n)! + O(log n)

=
(
p0 log

1
p0

+ p1 log
1
p1

)
n + O(log n)
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|y) = min{|p| : program p produced x given y}

terminology: x is λ-incompressible if C(x) ≥ |x| − λ

informal wording: x is random if C(x) ≈ |x|

intuition: x is random if there is no regularities in it
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|y) = min{|p| : program p produced x given y}

simple properties of conditional Kolmogorov complexity:

C(x | y) ≤ C(x) + O(1),

C(x | x) ≤ O(1),

C(F (x) | x) ≤ O(1) for any computable F .
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|y) = min{|p| : program p produced x given y}

strange properties:

Kolmogorov complexity C(x) is not a computable function

no algorithm which, given n, produces a string xn such that C(xn) > n

almost all statements of the form “C(x) > |x|/2” are unprovable

(a sort of Gödel’s incompleteness theorem)
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secure secret key: Kolmogorov’s approach

what is a secure secret key of size n?

possible answer: x is secure if any simple device brute-forcing the keys
would try this x at step ∼ 2n.

this is essentially equivalent to the condition C(x) ≈ n (i.e., x is random)
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|y) = min{|p| : program p produced x given y}

Information theory:

C(x, y) ≤ C(x) + C(y) + O(log(|x|+ |y|))

C(x, y) ≤ C(x) + C(y | x) + O(log(|x|+ |y|))

C(x, y) = C(x) + C(y | x)± O(log(|x|+ |y|)) [Kolmogorov–Levin]

Definition: mutual information

I(x : y) := C(y)− C(y | x) and I(x : y | z) := C(y | z)− C(y | x, z)

Symmetry of the mutual information:

I(x : y) = C(x) + C(y)− C(x, y)± O(log(|x|+ |y|))
= I(y : x)± O(log(|x|+ |y|))
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Kolmogorov complexity: information inequalities

similar to Shannon’s case:

monotonicity:

subadditivity:

submodularity:

Theorem
The same classes of linear inequalities are true for Shannon entropy and
(up to a log-term) for Kolmogorov complexity.
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mutual information and structural properties
How to construct x = x1 . . . x2n and y = y1 . . . y2n such that

C(x) = 2n, C(y) = 2n, I(x : y) = n ?

Example 1:
x1 . . . x2n = u1 . . . unw1 . . .wn

y1 . . . y2n = v1 . . . vnw1 . . .wn

Example 2: x, y ∈ {0, 1}2n and

DistHamming(x, y) = 0.11 . . . · (2n).

C(x | y) ≈ log

(
2n

0.11 · (2n)

)
≈ n

Example 3: finite field F with 2n elements

x = point on F2

y = line on F2

line and point are incident

x

y
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mutual information and structural properties
We have examples of x = x1 . . . x2n and y = y1 . . . y2n such that

C(x) = 2n, C(y) = 2n, I(x : y) = n ?

Example 1:
x1 . . . x2n = u1 . . . unw1 . . .wn

y1 . . . y2n = v1 . . . vnw1 . . .wn

Example 2: x, y ∈ {0, 1}2n and DistHamming(x, y) = 0.11 . . . · (2n).
Example 3: finite field F with 2n elements

x = point on F2

y = line on F2

line and point are incident

In general, what profiles
for (x, y, z) can we get
for these (x, y) and various z?

x y

z

n − α n − β

δ

βα

n
−
γ

γ
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Example 3: finite field F with 2n elements

x = point on F2

y = line on F2

line and point are incident

does there exist a z as follows?

C(z) ≈ n

C(z | x) ≈ 0

C(z | y) ≈ 0

x y

z

n n

0

00

0

n
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secret key agreement
Alice holds x
Bob holds y

C(x) = 2n, C(y) = 2n, I(x : y) = n.

Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication transcript) ≈ 0

Example 1:
x1 . . . x2n = u1 . . . unw1 . . .wn

y1 . . . y2n = v1 . . . vnw1 . . .wn

Example 2: (xi , yi ) is a sequence of 2n i.i.d. pairs,

prob[xi = 1] = 0.5, prob[yi = 1] = 0.5, prob[xi = yi ] ≈ 0.11

Example 3: finite field F with 2n elements

x = point on F2

y = line on F2

line and point are incident

x

y
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secret key agreement
Alice holds x and Bob holds y,

C(x) = 2n, C(y) = 2n, I(x : y) = n.

Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication transcript) ≈ 0

Theorem

There exists a protocol that guarantees a secret key w such that C(w) ≈ n.

Theorem

No protocol guarantees C(w) ≫ n.

Theorem

There exists a protocol with C(w) ≈ n where

Alice sends C(x | y) ≈ n bits and Bob sends nothing.

There exists a protocol with C(w) ≈ n where

Bob sends C(y | x) ≈ n bits and Alice sends nothing.
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Theorem

There exists a protocol s.t. for all such x, y we get C(w) ≈ n

Alice sends C(x | y) ≈ n bits and Bob sends nothing.

There exists a protocol s.t. for all such x, y we get C(w) ≈ n
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secret key agreement
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secrecy means I(w : communication transcript) ≈ 0
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There exists a protocol s.t. for all such x, y we get C(w) ≈ n

Alice sends C(x | y) ≈ n bits and Bob sends nothing.

There exists a protocol s.t. for all such x, y we get C(w) ≈ n

Bob sends C(y | x) ≈ n bits and Alice sends nothing.

for some x, y we cannot do anything substantially different.

Simple Example: finite field F with 2n elements
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secret key agreement
Alice holds x and Bob holds y,

C(x) = 2n, C(y) = 2n, I(x : y) = n.

Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication transcript) ≈ 0

Interesting Example: finite field F with 2n

elements
x = point on F2

y = line on F2

line and point are incident

x

y

Theorem

If C(w) ≈ n then Alice sends ≈ n bit or Bob sends ≈ n bits.

Lemma (An. Muchnik)

In such a complexity profile
either α = n or β = n

point x line y

z

n − α n − β

0

βα

0

n
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combinatorics of the plane

Lemma (An. Muchnik)

In such a complexity profile
either α = n or β = n

point x line y

z

n − α n − β

0

βα

0

n

sketch of proof: w.l.o.g. α ≥ β

C(x | z) = n − α, C(y | z) = n − β, C(x , y | z) = 2n − α− β

A = {x ′ is a point on F2 : C(x ′ | z) ≤ n − α}
B = {y ′ is a line on F2 : C(y ′ | z) ≤ n − β}

Counting Claim: Card(A) = 2n−α±O(log n) and Card(B) = 2n−β±O(log n)

Geometric fact: number of incidences in A× B is ≤ O
(√

Card(A) · Card(B)
)

therefore:

n − α+ n − β =
C(x , y | z) ≤ log[ no. of incidences in A× B ]

≤ 0.5 logCard(A) + logCard(B) = 1.5n − 0.5α− β
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sketch of proof: w.l.o.g. α ≥ β

C(x | z) = n − α, C(y | z) = n − β, C(x , y | z) = 2n − α− β

A = {x ′ is a point on F2 : C(x ′ | z) ≤ n − α}
B = {y ′ is a line on F2 : C(y ′ | z) ≤ n − β}

Counting Claim: Card(A) = 2n−α±O(log n) and Card(B) = 2n−β±O(log n)

Geometric fact: number of incidences in A× B is ≤ O
(√

Card(A) · Card(B)
)

therefore:

n − α+ n − β =
C(x , y | z) ≤ log[ no. of incidences in A× B ]

≤ 0.5 logCard(A) + logCard(B) = 1.5n − 0.5α− β
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from combinatorics of the plane to secret sharing

Reminder: a finite plane; A = some set of lines and B = some set of points

Geometric fact: number of incidences in A× B is ≤ O
(√

Card(A) · Card(B)
)

or ≤ O
(
Card(A) ·

√
Card(B)

)
Conclusion: in a secret key agreement protocol, on some pairs of inputs,
either Alice sends C(x | y) bits or Bob sends C(y | x) bits

Comment: some subtler properties of planes imply some subtler bounds for
communication protocols
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Proceed with the exercises!
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