Different Views of Information Part II

Geometry in Cryptography and Communication

Andrei Romashchenko

UiT The Arctic University of Norway, October 2025

random string

which of these strings is random?

random string

which of these strings is random?

Explain your guess!

Informal Definition: Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}
```

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}$

Formal Definition: Kolmogorov complexity (with a *decompressor U*)

$$C_U(\mathbf{x}) = \min\{|p| : U(p) = \mathbf{x}\}$$

Formal Definition: Kolmogorov complexity (with a *decompressor U*)

$$C_U(\mathbf{x}) = \min\{|p| : U(p) = \mathbf{x}\}\$$

Theorem

There exists a (computable) U such that for every other V and all strings \mathbf{x} ,

$$C_U(\mathbf{x}) \leq C_V(\mathbf{x}) + O(1).$$

Formal Definition: Kolmogorov complexity (with a decompressor U)

$$C_U(\mathbf{x}) = \min\{|p| : U(p) = \mathbf{x}\}$$

Theorem

There exists a (computable) U such that for every other V there is a constant λ such that for all strings x

$$C_U(\mathbf{x}) \leq C_V(\mathbf{x}) + \lambda.$$

Proof.

Idea: Let U be a universal machine that can simulate any other machine $V\dots$

Formal Definition: Kolmogorov complexity (with a decompressor U)

$$C_U(\mathbf{x}) = \min\{|p| : U(p) = \mathbf{x}\}$$

Theorem

There exists a (computable) U such that for every other V there is a constant λ such that for all strings x

$$C_U(\mathbf{x}) \leq C_V(\mathbf{x}) + \lambda.$$

Proof.

Idea: Let U be a universal machine that can simulate any other machine $V\dots$

In what follows we fix U and let $C(\mathbf{x}) := C_U(\mathbf{x})$

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}
```

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

Definition Kolmogorov complexity:

```
\begin{split} & \mathbf{C}(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\} \\ & \mathbf{C}(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\} \end{split}
```

•
$$C(x) \leq |x| + O(1)$$
,

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

- $C(x) \leq |x| + O(1)$,
- $C(xx) \le |x| + O(1)$,

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

- $C(x) \leq |x| + O(1)$,
- $C(xx) \le |x| + O(1)$,
- ullet $\mathrm{C}(F(\mathbf{x})) \leq \mathrm{C}(\mathbf{x}) + \mathit{O}(1)$ for any computable F,

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

- $C(x) \leq |x| + O(1)$,
- $C(xx) \le |x| + O(1)$,
- $C(F(x)) \le C(x) + O(1)$ for any computable F,
- for every n there exists a string of length n with complexity at least n,

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

- $C(x) \le |x| + O(1)$,
- $C(xx) \le |x| + O(1)$,
- $C(F(x)) \le C(x) + O(1)$ for any computable F,
- for every n there exists a string of length n with complexity at least n,
- there exists a $\lambda \geq$ s.t. for every n, at least 99% of strings of length n satisfy $n \lambda \leq C(\mathbf{x}) \leq n + \lambda$.

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

- $C(x) \le |x| + O(1)$,
- $C(xx) \le |x| + O(1)$,
- $C(F(x)) \le C(x) + O(1)$ for any computable F,
- for every n there exists a string of length n with complexity at least n,
- there exists a $\lambda \geq$ s.t. for every n, at least 99% of strings of length n satisfy $n \lambda \leq C(\mathbf{x}) \leq n + \lambda$.
- if there is an algorithm that for every input n produces a list of strings S_n , [binary expansion of n] \mapsto alg \mapsto [list of elements of S_n] then
 - ▶ for every $\mathbf{x} \in S_n$ we have $C(\mathbf{x}) \leq \log Card(S_n) + O(\log n)$
 - ▶ for most $\mathbf{x} \in S_n$ we have $C(\mathbf{x}) \ge \log \operatorname{Card}(S_n) O(1)$

Definition Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}$

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}$

another simple property:

• if a bit string \mathbf{x} contains $p_0 n$ zeros and $p_1 n$ ones, then

$$C(\mathbf{x}) \leq \log \frac{n!}{(p_0 n)! \cdot (p_1 n)!} + O(\log n)$$

Definition Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}$

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

another simple property:

• if a bit string **x** contains $p_0 n$ zeros and $p_1 n$ ones, then

$$C(\mathbf{x}) \leq \log \frac{n!}{(\rho_0 n)! \cdot (\rho_1 n)!} + O(\log n) = \left(p_0 \log \frac{1}{\rho_0} + \rho_1 \log \frac{1}{\rho_1}\right) n + O(\log n)$$

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

terminology: x is λ -incompressible if $C(x) \ge |x| - \lambda$

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}
```

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}$

terminology: x is λ -incompressible if $C(x) \ge |x| - \lambda$

informal wording: x is random if $\mathrm{C}(x) \approx |x|$

Definition Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\$ $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

terminology: x is λ -incompressible if $C(x) \ge |x| - \lambda$

informal wording: x is random if $C(x) \approx |x|$

intuition: x is random if there is no regularities in it

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

•
$$C(x \mid y) \le C(x) + O(1)$$
,

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

- $C(x \mid y) \leq C(x) + O(1)$,
- $C(x \mid x) \leq O(1)$,

Definition Kolmogorov complexity:

```
\begin{split} & \mathbf{C}(\mathbf{x}) = \min\{|p| \ : \ \mathsf{program} \ p \ \mathsf{produced} \ \mathbf{x}\} \\ & \mathbf{C}(\mathbf{x}|\mathbf{y}) = \min\{|p| \ : \ \mathsf{program} \ p \ \mathsf{produced} \ \mathbf{x} \ \mathsf{given} \ \mathbf{y}\} \end{split}
```

- $C(x \mid y) \leq C(x) + O(1)$,
- $C(x \mid x) \leq O(1)$,
- $C(F(x) \mid x) \leq O(1)$ for any computable F.

Definition Kolmogorov complexity:

```
\begin{split} & \mathbf{C}(\mathbf{x}) = \min\{|p| \ : \ \mathsf{program} \ p \ \mathsf{produced} \ \mathbf{x}\} \\ & \mathbf{C}(\mathbf{x}|\mathbf{y}) = \min\{|p| \ : \ \mathsf{program} \ p \ \mathsf{produced} \ \mathbf{x} \ \mathsf{given} \ \mathbf{y}\} \end{split}
```

strange properties:

Definition Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

strange properties:

 \bullet Kolmogorov complexity $\mathrm{C}(\textbf{x})$ is not a computable function

Definition Kolmogorov complexity:

```
\begin{split} & \mathbf{C}(\mathbf{x}) = \min\{|p| \ : \ \mathsf{program} \ p \ \mathsf{produced} \ \mathbf{x}\} \\ & \mathbf{C}(\mathbf{x}|\mathbf{y}) = \min\{|p| \ : \ \mathsf{program} \ p \ \mathsf{produced} \ \mathbf{x} \ \mathsf{given} \ \mathbf{y}\} \end{split}
```

strange properties:

- Kolmogorov complexity $C(\mathbf{x})$ is not a computable function
- no algorithm which, given n, produces a string \mathbf{x}_n such that $C(\mathbf{x}_n) > n$

Definition Kolmogorov complexity:

```
\begin{split} & \mathbf{C}(\mathbf{x}) = \min\{|p| \ : \ \mathsf{program} \ p \ \mathsf{produced} \ \mathbf{x}\} \\ & \mathbf{C}(\mathbf{x}|\mathbf{y}) = \min\{|p| \ : \ \mathsf{program} \ p \ \mathsf{produced} \ \mathbf{x} \ \mathsf{given} \ \mathbf{y}\} \end{split}
```

strange properties:

- \bullet Kolmogorov complexity $\mathrm{C}(\textbf{x})$ is not a computable function
- no algorithm which, given n, produces a string \mathbf{x}_n such that $C(\mathbf{x}_n) > n$
- almost all statements of the form "C(x) > |x|/2" are unprovable (a sort of Gödel's *incompleteness* theorem)

what is a secure secret key of size n?

what is a secure secret key of size *n*?

possible answer: \mathbf{x} is secure if any *simple* device brute-forcing the keys would try this \mathbf{x} at step $\sim 2^n$.

what is a secure secret key of size n?

possible answer: \mathbf{x} is secure if any *simple* device brute-forcing the keys would try this \mathbf{x} at step $\sim 2^n$.

this is essentially equivalent to the condition $C(\mathbf{x}) \approx n$

what is a secure secret key of size n?

possible answer: \mathbf{x} is secure if any *simple* device brute-forcing the keys would try this \mathbf{x} at step $\sim 2^n$.

this is essentially equivalent to the condition $C(\mathbf{x}) \approx n$ (i.e., \mathbf{x} is random)

Definition of Kolmogorov complexity:

```
C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\
C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\
```

Information theory:

Definition of Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}$

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}$

Information theory:

 $\bullet \ \mathrm{C}(\mathbf{x},\mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y}) + O(\log(|\mathbf{x}|+|\mathbf{y}|))$

Definition of Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\$ $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

Information theory:

- $C(\mathbf{x}, \mathbf{y}) \leq C(\mathbf{x}) + C(\mathbf{y}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- $\bullet \ \mathrm{C}(\mathbf{x},\mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y} \mid \mathbf{x}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$

Definition of Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}\$ $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

Information theory:

- $C(x,y) \le C(x) + C(y) + O(\log(|x| + |y|))$
- $\bullet \ \mathrm{C}(\mathbf{x}, \mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y} \mid \mathbf{x}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- $C(x, y) = C(x) + C(y \mid x) \pm O(\log(|x| + |y|))$ [Kolmogorov–Levin]

Definition of Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}$

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

Information theory:

- $\bullet \ \mathrm{C}(\mathsf{x},\mathsf{y}) \leq \mathrm{C}(\mathsf{x}) + \mathrm{C}(\mathsf{y}) + O(\log(|\mathsf{x}|+|\mathsf{y}|))$
- $\bullet \ \mathrm{C}(\mathbf{x}, \mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y} \mid \mathbf{x}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- $C(x, y) = C(x) + C(y \mid x) \pm O(\log(|x| + |y|))$ [Kolmogorov–Levin]

Definition: mutual information

$$I(\mathbf{x}:\mathbf{y}) := C(\mathbf{y}) - C(\mathbf{y} \mid \mathbf{x})$$

Definition of Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}$

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

Information theory:

- $\bullet \ \mathrm{C}(\mathsf{x},\mathsf{y}) \leq \mathrm{C}(\mathsf{x}) + \mathrm{C}(\mathsf{y}) + O(\log(|\mathsf{x}|+|\mathsf{y}|))$
- $\bullet \ \mathrm{C}(\mathbf{x}, \mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y} \mid \mathbf{x}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- $C(x, y) = C(x) + C(y \mid x) \pm O(\log(|x| + |y|))$ [Kolmogorov–Levin]

Definition: mutual information

$$\mathrm{I}(\mathbf{x}:\mathbf{y}) := \mathrm{C}(\mathbf{y}) - \mathrm{C}(\mathbf{y}\mid\mathbf{x}) \text{ and } \mathrm{I}(\mathbf{x}:\mathbf{y}\mid\mathbf{z}) := \mathrm{C}(\mathbf{y}\mid\mathbf{z}) - \mathrm{C}(\mathbf{y}\mid\mathbf{x},\mathbf{z})$$

Definition of Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}$

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

Information theory:

- $C(\mathbf{x}, \mathbf{y}) \leq C(\mathbf{x}) + C(\mathbf{y}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- $\bullet \ \mathrm{C}(\mathbf{x}, \mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y} \mid \mathbf{x}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- $C(x, y) = C(x) + C(y \mid x) \pm O(\log(|x| + |y|))$ [Kolmogorov–Levin]

Definition: mutual information

$$I(\mathbf{x}:\mathbf{y}) := \mathrm{C}(\mathbf{y}) - \mathrm{C}(\mathbf{y} \mid \mathbf{x}) \text{ and } I(\mathbf{x}:\mathbf{y} \mid \mathbf{z}) := \mathrm{C}(\mathbf{y} \mid \mathbf{z}) - \mathrm{C}(\mathbf{y} \mid \mathbf{x}, \mathbf{z})$$

Symmetry of the mutual information:

Definition of Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}$

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

Information theory:

- $\bullet \ \mathrm{C}(\mathsf{x},\mathsf{y}) \leq \mathrm{C}(\mathsf{x}) + \mathrm{C}(\mathsf{y}) + O(\log(|\mathsf{x}|+|\mathsf{y}|))$
- $\bullet \ \mathrm{C}(\mathbf{x}, \mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y} \mid \mathbf{x}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- $C(x, y) = C(x) + C(y \mid x) \pm O(\log(|x| + |y|))$ [Kolmogorov–Levin]

Definition: mutual information

$$\mathrm{I}(\mathbf{x}:\mathbf{y}) := \mathrm{C}(\mathbf{y}) - \mathrm{C}(\mathbf{y}\mid\mathbf{x}) \text{ and } \mathrm{I}(\mathbf{x}:\mathbf{y}\mid\mathbf{z}) := \mathrm{C}(\mathbf{y}\mid\mathbf{z}) - \mathrm{C}(\mathbf{y}\mid\mathbf{x},\mathbf{z})$$

Symmetry of the mutual information:

•
$$I(\mathbf{x}:\mathbf{y}) = C(\mathbf{x}) + C(\mathbf{y}) - C(\mathbf{x},\mathbf{y}) \pm O(\log(|\mathbf{x}|+|\mathbf{y}|))$$

Definition of Kolmogorov complexity:

 $C(\mathbf{x}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x}\}$

 $C(\mathbf{x}|\mathbf{y}) = \min\{|p| : \text{program } p \text{ produced } \mathbf{x} \text{ given } \mathbf{y}\}\$

Information theory:

- $\bullet \ \mathrm{C}(\mathsf{x},\mathsf{y}) \leq \mathrm{C}(\mathsf{x}) + \mathrm{C}(\mathsf{y}) + O(\log(|\mathsf{x}|+|\mathsf{y}|))$
- $\bullet \ \mathrm{C}(\mathbf{x}, \mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y} \mid \mathbf{x}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- $C(x, y) = C(x) + C(y \mid x) \pm O(\log(|x| + |y|))$ [Kolmogorov–Levin]

Definition: mutual information

$$\mathrm{I}(\mathbf{x}:\mathbf{y}) := \mathrm{C}(\mathbf{y}) - \mathrm{C}(\mathbf{y}\mid\mathbf{x}) \text{ and } \mathrm{I}(\mathbf{x}:\mathbf{y}\mid\mathbf{z}) := \mathrm{C}(\mathbf{y}\mid\mathbf{z}) - \mathrm{C}(\mathbf{y}\mid\mathbf{x},\mathbf{z})$$

Symmetry of the mutual information:

$$\begin{aligned} \bullet \ & \mathrm{I}(\mathbf{x}:\mathbf{y}) = \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y}) - \mathrm{C}(\mathbf{x},\mathbf{y}) \pm O(\log(|\mathbf{x}|+|\mathbf{y}|)) \\ & = \mathrm{I}(\mathbf{y}:\mathbf{x}) \pm O(\log(|\mathbf{x}|+|\mathbf{y}|)) \end{aligned}$$

similar to Shannon's case:

similar to Shannon's case:

monotonicity:

$$\mathrm{C}(\mathbf{x}) \leq \mathrm{C}(\mathbf{x},\mathbf{y}) + \mathit{O}(1)$$
, cf. $\mathrm{C}(\mathbf{y} \mid \mathbf{x}) \geq 0$

similar to Shannon's case:

monotonicity:

$$\mathrm{C}(\mathbf{x}) \leq \mathrm{C}(\mathbf{x},\mathbf{y}) + \mathit{O}(1)$$
, cf. $\mathrm{C}(\mathbf{y} \mid \mathbf{x}) \geq 0$

subadditivity:

$$\mathrm{C}(\textbf{x},\textbf{y}) \leq \mathrm{C}(\textbf{x}) + \mathrm{C}(\textbf{y}) + \textit{O}(\log(|\textbf{x}| + |\textbf{y}|)), \text{ cf. } \mathrm{I}(\textbf{x}:\textbf{y}) \geq -\textit{O}(\log(|\textbf{x}| + |\textbf{y}|))$$

similar to Shannon's case:

monotonicity:

$$C(\mathbf{x}) \leq C(\mathbf{x}, \mathbf{y}) + O(1)$$
, cf. $C(\mathbf{y} \mid \mathbf{x}) \geq 0$

subadditivity:

$$\mathrm{C}(\mathbf{x},\mathbf{y}) \leq \mathrm{C}(\mathbf{x}) + \mathrm{C}(\mathbf{y}) + O(\log(|\mathbf{x}|+|\mathbf{y}|)), \text{ cf. } \mathrm{I}(\mathbf{x}:\mathbf{y}) \geq -O(\log(|\mathbf{x}|+|\mathbf{y}|))$$

submodularity:

$$\begin{split} \mathrm{C}(\mathbf{x},\mathbf{y},\mathbf{z}) + \mathrm{C}(\mathbf{z}) &\leq \mathrm{C}(\mathbf{x},\mathbf{z}) + \mathrm{C}(\mathbf{y},\mathbf{z}) + \mathit{O}(\log(|\mathbf{x}|+|\mathbf{y}|)), \\ &\text{cf. } \mathrm{I}(\mathbf{x}:\mathbf{y}\mid\mathbf{z}) \geq -\mathit{O}(\log(|\mathbf{x}|+|\mathbf{y}|+|\mathbf{z}|)) \end{split}$$

similar to Shannon's case:

monotonicity:

$$C(\mathbf{x}_{\mathcal{I}}) \leq C(\mathbf{x}_{\mathcal{I}\cup\mathcal{J}}) + O(1)$$

• subadditivity:

$$C(\mathbf{x}_{\mathcal{I}\cup\mathcal{J}})) \leq C(\mathbf{x}_{\mathcal{I}}) + C(\mathbf{x}_{\mathcal{J}}) + O(\log \ldots)$$

submodularity:

$$C(\mathbf{x}_{\mathcal{I}\cup\mathcal{I}\cup\mathcal{K}})) + C(\mathbf{x}_{\mathcal{K}}) \leq C(\mathbf{x}_{\mathcal{I}\cup\mathcal{K}}) + C(\mathbf{x}_{\mathcal{I}\cup\mathcal{K}}) + O(\log \ldots)$$

similar to Shannon's case:

monotonicity:

$$C(\mathbf{x}_{\mathcal{I}}) \leq C(\mathbf{x}_{\mathcal{I}\cup\mathcal{J}}) + O(1)$$

subadditivity:

$$C(\mathbf{x}_{\mathcal{I}\cup\mathcal{J}})) \leq C(\mathbf{x}_{\mathcal{I}}) + C(\mathbf{x}_{\mathcal{J}}) + O(\log \ldots)$$

submodularity:

$$C(\mathbf{x}_{\mathcal{I}\cup\mathcal{J}\cup\mathcal{K}})) + C(\mathbf{x}_{\mathcal{K}}) \leq C(\mathbf{x}_{\mathcal{I}\cup\mathcal{K}}) + C(\mathbf{x}_{\mathcal{J}\cup\mathcal{K}}) + O(\log \ldots)$$

Theorem

The same classes of linear inequalities are true for Shannon entropy and (up to a log-term) for Kolmogorov complexity.

How to construct $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

How to construct $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n ?$$

How to construct $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n ?$$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

How to construct $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n ?$$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

Example 2: $x, y \in \{0, 1\}^{2n}$ and

$$\mathrm{Dist}_{\mathrm{Hamming}}(\mathbf{x},\mathbf{y}) = 0.11...\cdot(2n).$$

How to construct $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n ?$$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

Example 2: $x, y \in \{0, 1\}^{2n}$ and

$$\mathrm{Dist}_{\mathrm{Hamming}}(\mathbf{x},\mathbf{y}) = 0.11...\cdot(2n).$$

$$C(\mathbf{x} \mid \mathbf{y}) \approx \log \binom{2n}{0.11 \cdot (2n)} \approx n$$

How to construct $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n ?$$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

Example 2: $x, y \in \{0, 1\}^{2n}$ and

$$\mathrm{Dist}_{\mathrm{Hamming}}(\mathbf{x},\mathbf{y})=0.11\ldots(2n).$$

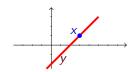
$$C(\mathbf{x} \mid \mathbf{y}) \approx \log \binom{2n}{0.11 \cdot (2n)} \approx n$$

Example 3: finite field \mathbb{F} with 2^n elements

$$\mathbf{x} = \text{point on } \mathbb{F}^2$$

 $\mathbf{v} = \text{line on } \mathbb{F}^2$

line and point are incident



We have examples of $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n ?$$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

Example 2: $x, y \in \{0, 1\}^{2n}$ and $Dist_{Hamming}(x, y) = 0.11...(2n)$.

Example 3: finite field \mathbb{F} with 2^n elements

 $\mathbf{x} = \text{point on } \mathbb{F}^2$ $\mathbf{y} = \text{line on } \mathbb{F}^2$

line and point are incident

We have examples of $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n$$
?

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

Example 2: $x, y \in \{0, 1\}^{2n}$ and $Dist_{Hamming}(x, y) = 0.11...(2n)$.

Example 3: finite field \mathbb{F} with 2^n elements

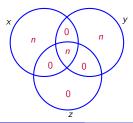
$$\mathbf{x} = \text{point on } \mathbb{F}^2$$

 $\mathbf{y} = \text{line on } \mathbb{F}^2$

line and point are incident

does there exist a z as follows?

- $C(z) \approx n$
- $C(z \mid x) \approx 0$
- $C(z \mid y) \approx 0$



We have examples of $\mathbf{x} = x_1 \dots x_{2n}$ and $\mathbf{y} = y_1 \dots y_{2n}$ such that

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n ?$$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

Example 2: $x, y \in \{0, 1\}^{2n}$ and $Dist_{Hamming}(x, y) = 0.11 ... \cdot (2n)$.

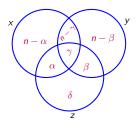
Example 3: finite field \mathbb{F} with 2^n elements

$$\mathbf{x} = \text{point on } \mathbb{F}^2$$

 $\mathbf{y} = \text{line on } \mathbb{F}^2$

line and point are incident

In general, what **profiles** for (x, y, z) can we get for these (x, y) and various z?



Alice holds x
Bob holds y

Alice holds
$$\mathbf{x} = x_1 \dots x_{2n}$$

Bob holds $\mathbf{y} = y_1 \dots y_{2n}$

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$

Alice holds
$$\mathbf{x} = x_1 \dots x_{2n}$$

Bob holds $\mathbf{y} = y_1 \dots y_{2n}$

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$ secrecy means $I({\bf w}: {\tt communication_transcript}) \approx 0$

Alice holds
$$\mathbf{x} = x_1 \dots x_{2n}$$

Bob holds $\mathbf{y} = y_1 \dots y_{2n}$

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$ secrecy means $I({\bf w}: {\tt communication_transcript}) \approx 0$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

Alice holds
$$\mathbf{x} = x_1 \dots x_{2n}$$

Bob holds $\mathbf{y} = y_1 \dots y_{2n}$

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$ secrecy means $I({\bf w}: {\tt communication_transcript}) \approx 0$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

Example 2: (x_i, y_i) is a sequence of 2n i.i.d. pairs,

$$\text{prob}[x_i = 1] = 0.5, \text{ prob}[y_i = 1] = 0.5, \text{ prob}[x_i = y_i] \approx 0.11$$

Alice holds
$$\mathbf{x} = x_1 \dots x_{2n}$$

Bob holds $\mathbf{y} = y_1 \dots y_{2n}$

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$ secrecy means $I({\bf w}: {\tt communication_transcript}) \approx 0$

Example 1:

$$x_1 \dots x_{2n} = u_1 \dots u_n w_1 \dots w_n$$

 $y_1 \dots y_{2n} = v_1 \dots v_n w_1 \dots w_n$

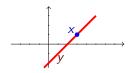
Example 2: (x_i, y_i) is a sequence of 2n i.i.d. pairs,

$$\text{prob}[x_i = 1] = 0.5, \text{ prob}[y_i = 1] = 0.5, \text{ prob}[x_i = y_i] \approx 0.11$$

Example 3: finite field \mathbb{F} with 2^n elements

$$\mathbf{x} = \text{point on } \mathbb{F}^2$$

 $\mathbf{y} = \text{line on } \mathbb{F}^2$



Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$

Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key \boldsymbol{w} secrecy means $I(\boldsymbol{w}:\texttt{communication_transcript})\approx 0$

Theorem

There exists a protocol that guarantees a secret key \mathbf{w} such that $\mathrm{C}(\mathbf{w}) \approx n$.

Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key \boldsymbol{w} secrecy means $I(\boldsymbol{w}:\texttt{communication_transcript})\approx 0$

Theorem

There exists a protocol that guarantees a secret key ${\bf w}$ such that ${\rm C}({\bf w}) \approx n$.

Theorem

No protocol guarantees $C(\mathbf{w}) \gg n$.

Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$ secrecy means $I({\bf w}: {\tt communication_transcript}) \approx 0$

Theorem

There exists a protocol that guarantees a secret key ${\bf w}$ such that ${\rm C}({\bf w}) \approx n$.

Theorem

No protocol guarantees $C(\mathbf{w}) \gg n$.

Theorem

- There exists a protocol with $C(\mathbf{w}) \approx n$ where Alice sends $C(\mathbf{x} \mid \mathbf{y}) \approx n$ bits and Bob sends nothing.
- There exists a protocol with $C(\mathbf{w}) \approx n$ where Bob sends $C(\mathbf{y} \mid \mathbf{x}) \approx n$ bits and Alice sends nothing.

Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$ secrecy means $I({\bf w}: {\tt communication_transcript}) \approx 0$

Theorem

- There exists a protocol s.t. for all such \mathbf{x}, \mathbf{y} we get $\mathrm{C}(\mathbf{w}) \approx n$ Alice sends $\mathrm{C}(\mathbf{x} \mid \mathbf{y}) \approx n$ bits and Bob sends nothing.
- There exists a protocol s.t. for all such \mathbf{x} , \mathbf{y} we get $\mathrm{C}(\mathbf{w}) \approx n$ Bob sends $\mathrm{C}(\mathbf{y} \mid \mathbf{x}) \approx n$ bits and Alice sends nothing.

•

Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

Alice and Bob communication via a public channel and agree on a secret key \boldsymbol{w} secrecy means $I(\boldsymbol{w}:\texttt{communication_transcript})\approx 0$

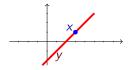
Theorem

- There exists a protocol s.t. for all such \mathbf{x}, \mathbf{y} we get $\mathrm{C}(\mathbf{w}) \approx n$ Alice sends $\mathrm{C}(\mathbf{x} \mid \mathbf{y}) \approx n$ bits and Bob sends nothing.
- There exists a protocol s.t. for all such \mathbf{x} , \mathbf{y} we get $\mathrm{C}(\mathbf{w}) \approx n$ Bob sends $\mathrm{C}(\mathbf{y} \mid \mathbf{x}) \approx n$ bits and Alice sends nothing.
- for some **x**, **y** we cannot do anything substantially different.

Simple Example: finite field \mathbb{F} with 2^n elements

$$\mathbf{x} \ = \ \mathsf{point} \ \mathsf{on} \ \mathbb{F}^2$$

$$\mathbf{v} = \text{line on } \mathbb{F}^2$$



line and point are incident

Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

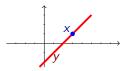
Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$ secrecy means $I({\bf w}: {\tt communication_transcript}) \approx 0$

Interesting Example: finite field \mathbb{F} with 2^n

elements

$$\mathbf{x} = \text{point on } \mathbb{F}^2$$

 $\mathbf{y} = \text{line on } \mathbb{F}^2$



line and point are incident

Theorem

If $C(\mathbf{w}) \approx n$ then Alice sends $\approx n$ bit or Bob sends $\approx n$ bits.

Alice holds x and Bob holds y,

$$C(\mathbf{x}) = 2n, \ C(\mathbf{y}) = 2n, \ I(\mathbf{x} : \mathbf{y}) = n.$$

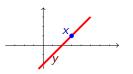
Alice and Bob communication via a public channel and agree on a secret key ${\bf w}$ secrecy means $I({\bf w}: {\tt communication_transcript}) \approx 0$

Interesting Example: finite field \mathbb{F} with 2^n

elements

$$\mathbf{x} = \text{point on } \mathbb{F}^2$$

 $\mathbf{y} = \int \operatorname{line} \operatorname{on} \, \mathbb{F}^2$



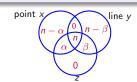
line and point are incident

Theorem

If $C(\mathbf{w}) \approx n$ then Alice sends $\approx n$ bit or Bob sends $\approx n$ bits.

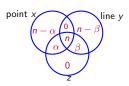
Lemma (An. Muchnik)

In such a complexity profile either $\alpha = n$ or $\beta = n$



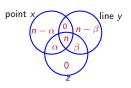
Lemma (An. Muchnik)

In such a complexity profile either $\alpha = n$ or $\beta = n$



Lemma (An. Muchnik)

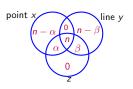
In such a complexity profile either $\alpha = n$ or $\beta = n$



sketch of proof:

Lemma (An. Muchnik)

In such a complexity profile either $\alpha = n$ or $\beta = n$

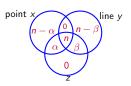


sketch of proof: w.l.o.g. $\alpha \geq \beta$

$$C(x \mid z) = n - \alpha$$
, $C(y \mid z) = n - \beta$, $C(x, y \mid z) = 2n - \alpha - \beta$
 $A = \{x' \text{ is a point on } \mathbb{F}^2 : C(x' \mid z) \le n - \alpha\}$
 $B = \{y' \text{ is a line on } \mathbb{F}^2 : C(y' \mid z) \le n - \beta\}$

Lemma (An. Muchnik)

In such a complexity profile either $\alpha = n$ or $\beta = n$



sketch of proof: w.l.o.g. $\alpha > \beta$

$$C(x \mid z) = n - \alpha$$
, $C(y \mid z) = n - \beta$, $C(x, y \mid z) = 2n - \alpha - \beta$

$$A = \{x' \text{ is a point on } \mathbb{F}^2 : C(x' \mid z) \le n - \alpha\}$$

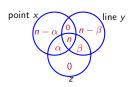
 $B = \{y' \text{ is a line on } \mathbb{F}^2 : C(y' \mid z) \le n - \beta\}$

$$B = \{y' \text{ is a line on } \mathbb{F}^2 : C(y' \mid z) \le n - \beta\}$$

Counting Claim: Card(A) = $2^{n-\alpha \pm O(\log n)}$ and Card(B) = $2^{n-\beta \pm O(\log n)}$

Lemma (An. Muchnik)

In such a complexity profile either $\alpha = n$ or $\beta = n$



sketch of proof: w.l.o.g. $\alpha > \beta$

$$C(x \mid z) = n - \alpha$$
, $C(y \mid z) = n - \beta$, $C(x, y \mid z) = 2n - \alpha - \beta$

$$A = \{x' \text{ is a point on } \mathbb{F}^2 : C(x' \mid z) \le n - \alpha\}$$

$$B = \{y' \text{ is a line on } \mathbb{F}^2 : C(y' \mid z) \le n - \beta\}$$

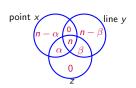
$$B = \{y' \text{ is a line on } \mathbb{F}^2 : C(y' \mid z) \le n - \beta\}$$

Counting Claim:
$$Card(A) = 2^{n-\alpha \pm O(\log n)}$$
 and $Card(B) = 2^{n-\beta \pm O(\log n)}$

Geometric fact: number of incidences in
$$A \times B$$
 is $\leq O\left(\sqrt{\operatorname{Card}(A)} \cdot \operatorname{Card}(B)\right)$

Lemma (An. Muchnik)

In such a complexity profile either $\alpha = n$ or $\beta = n$



sketch of proof: w.l.o.g. $\alpha \geq \beta$

$$C(x \mid z) = n - \alpha$$
, $C(y \mid z) = n - \beta$, $C(x, y \mid z) = 2n - \alpha - \beta$

$$A = \{x' \text{ is a point on } \mathbb{F}^2 : C(x' \mid z) \le n - \alpha\}$$

$$B = \{y' \text{ is a line on } \mathbb{F}^2 : C(y' \mid z) \le n - \beta\}$$

Counting Claim: Card(A) = $2^{n-\alpha \pm O(\log n)}$ and Card(B) = $2^{n-\beta \pm O(\log n)}$

Geometric fact: number of incidences in $A \times B$ is $\leq O\left(\sqrt{\operatorname{Card}(A)} \cdot \operatorname{Card}(B)\right)$

therefore:

$$n-\alpha+n-\beta=$$
 $C(x,y\mid z)\leq \log[\text{ no. of incidences in }A\times B]$ $\leq 0.5\log\operatorname{Card}(A)+\log\operatorname{Card}(B)=1.5n-0.5\alpha-\beta$

Reminder: a finite plane; $A = some \ set \ of \ lines$ and $B = some \ set \ of \ points$

Reminder: a finite plane; A = some set of lines and <math>B = some set of points

Geometric fact: number of incidences in
$$A \times B$$
 is $\leq O\left(\sqrt{\operatorname{Card}(A)} \cdot \operatorname{Card}(B)\right)$ or $\leq O\left(\operatorname{Card}(A) \cdot \sqrt{\operatorname{Card}(B)}\right)$

Reminder: a finite plane; $A = some \ set \ of \ lines$ and $B = some \ set \ of \ points$

Geometric fact: number of incidences in
$$A \times B$$
 is $\leq O\left(\sqrt{\operatorname{Card}(A)} \cdot \operatorname{Card}(B)\right)$ or $\leq O\left(\operatorname{Card}(A) \cdot \sqrt{\operatorname{Card}(B)}\right)$

Conclusion: in a secret key agreement protocol, on *some* pairs of inputs, either Alice sends $C(x \mid y)$ bits or Bob sends $C(y \mid x)$ bits

Reminder: a finite plane; $A = some \ set \ of \ lines$ and $B = some \ set \ of \ points$

Geometric fact: number of incidences in
$$A \times B$$
 is $\leq O\left(\sqrt{\operatorname{Card}(A)} \cdot \operatorname{Card}(B)\right)$ or $\leq O\left(\operatorname{Card}(A) \cdot \sqrt{\operatorname{Card}(B)}\right)$

Conclusion: in a secret key agreement protocol, on *some* pairs of inputs, either Alice sends $C(x \mid y)$ bits or Bob sends $C(y \mid x)$ bits

Comment: some subtler properties of planes imply some subtler bounds for communication protocols

Proceed with the exercises!