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random string

which of these strings is random?

00000000000000000000000000000000000000000000000000
01010101010101010101010101010101010101010101010101
¢ 00111110010011011001110110000011101010110111100011
¢ 10101101111110000101010001011000101000101011101101
¢ 11001001000011111101101010100010001000010110100011
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random string

which of these strings is random?

00000000000000000000000000000000000000000000000000
01010101010101010101010101010101010101010101010101
00111110010011011001110110000011101010110111100011
e~ 10.101101111110000101010001011000101000101011101101
m ~ 11.001001000011111101101010100010001000010110100011

Explain your guess!
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measure of information: Kolmogorov’s approach

Informal Definition: Kolmogorov complexity:
C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}
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measure of information: Kolmogorov’s approach

Formal Definition: Kolmogorov complexity (with a decompressor U)

Cu(x) = min{|p| : U(p) =x}
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measure of information: Kolmogorov’s approach

Formal Definition: Kolmogorov complexity (with a decompressor U)

Cu(x) = min{|p| : U(p) =x}

Theorem

There exists a (computable) U such that for every other V' and all strings x,

Cuy(x) < Cy(x)+ O(1).
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measure of information: Kolmogorov’s approach

Formal Definition: Kolmogorov complexity (with a decompressor U)

Cu(x) = min{lp| : U(p) =x}

Theorem

There exists a (computable) U such that for every other V' there is a constant \
such that for all strings x

Cu(x) < Cy(x) + A

Proof.

Idea: Let U be a universal machine that can simulate any other machine V... [J

v
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measure of information: Kolmogorov’s approach

Formal Definition: Kolmogorov complexity (with a decompressor U)

Cu(x) = min{lp| : U(p) =x}

Theorem

There exists a (computable) U such that for every other V' there is a constant \
such that for all strings x

Cu(x) < Cy(x) + A

Proof.

Idea: Let U be a universal machine that can simulate any other machine V... [J

v

In what follows we fix U and let C(x) := Cy(x)
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

simple properties:
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

simple properties:
o C(x) < x|+ O(1),
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

simple properties:
o C(x) < x|+ O(1),
o C(xx) < |x|+ O(1),
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

simple properties:
o C(x) < x|+ O(1),
o C(xx) < |x|+ O(1),
o C(F(x)) < C(x)+ O(1) for any computable F,
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

simple properties:
o C(x) < x|+ O(1),
o C(xx) < |x|+ O(1),
o C(F(x)) < C(x)+ O(1) for any computable F,

@ for every n there exists a string of length n with complexity at least n,
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

simple properties:
o C(x) < x|+ O(1),
o C(xx) < |x|+ O(1),
o C(F(x)) < C(x)+ O(1) for any computable F,
@ for every n there exists a string of length n with complexity at least n,
@ there exists a A > s.t. for every n, at least 99% of strings of length n satisfy
n—X < C(x) < n+ A
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x]y) = min{|p| : program p produced x given y}

simple properties:
o C(x) < x|+ O(1),
Clxx) < |x| + O(1),
C(F(x)) < C(x) + O(1) for any computable F,

for every n there exists a string of length n with complexity at least n,

there exists a A > s.t. for every n, at least 99% of strings of length n satisfy
n—XA < C(x) < n+ A
@ if there is an algorithm that for every input n produces a list of strings S,,,
[binary expansion of n] — alg  [list of elements of S,]
then

» for every x € S, we have C(x) < log Card(S,) + O(log n)

» for most x € S, we have C(x) > log Card(S,) — O(1)
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

another simple property:
@ if a bit string x contains pgn zeros and p;n ones, then
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

another simple property:
@ if a bit string x contains pgn zeros and p;n ones, then

C(x) < log W!(Pln)! + O(log n) = (po log % + py log %) n+ O(log n)
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

terminology: x is A-incompressible if C(x) > |x| — A
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

terminology: x is A-incompressible if C(x) > |x| — A

informal wording: x is random if C(x) ~ |x|
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measure of information: Kolmogorov’s approach
Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

terminology: x is A-incompressible if C(x) > |x| — A
informal wording: x is random if C(x) ~ |x|

intuition: x is random if there is no regularities in it
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}

simple properties of conditional Kolmogorov complexity:
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}

simple properties of conditional Kolmogorov complexity:

e C(x|y) <C(x)+ 0(1),
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}

simple properties of conditional Kolmogorov complexity:
e C(x|y) <C(x)+ 0(1),
e C(x|x) < 0(1),
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}

simple properties of conditional Kolmogorov complexity:
o C(x|y) < C(x)+ O(1),
e C(x|x) < 0(1),
o C(F(x)|x) < O(1) for any computable F.
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}

strange properties:
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}

strange properties:

@ Kolmogorov complexity C(x) is not a computable function
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:

C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}

strange properties:
@ Kolmogorov complexity C(x) is not a computable function

@ no algorithm which, given n, produces a string x,, such that C(x,) > n
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measure of information: Kolmogorov’s approach

Definition Kolmogorov complexity:
C(x) = min{|p| : program p produced x}
C(x|]y) = min{|p| : program p produced x given y}

strange properties:
@ Kolmogorov complexity C(x) is not a computable function
@ no algorithm which, given n, produces a string x,, such that C(x,) > n

@ almost all statements of the form “C(x) > |x|/2" are unprovable

(a sort of Godel's incompleteness theorem)
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secure secret key: Kolmogorov's approach

what is a secure secret key of size n?
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secure secret key: Kolmogorov's approach

what is a secure secret key of size n?

possible answer: x is secure if any simple device brute-forcing the keys
would try this x at step ~ 2",
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secure secret key: Kolmogorov's approach

what is a secure secret key of size n?

possible answer: x is secure if any simple device brute-forcing the keys
would try this x at step ~ 2",

this is essentially equivalent to the condition C(x) ~ n
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secure secret key: Kolmogorov's approach

what is a secure secret key of size n?

possible answer: x is secure if any simple device brute-forcing the keys
would try this x at step ~ 2",

this is essentially equivalent to the condition C(x) ~ n (i.e., x is random)

AR. Different Views of Information 9/20



measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
o C(x,y) < C(x) + C(y) + O(log(|x| + [y[))
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
o C(x,y) < C(x) + C(y) + O(log(|x| + [y[))
@ C(x,y) < C(x) + C(y | x) + O(log(|x| +1y1))
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
o C(x,y) < C(x) + C(y) + O(log(|x| + ly[))
o C(x,y) < C(x) + C(y | x) + O(log(|x| + |y|))
@ C(x,y) = C(x) + C(y | x) = O(log(|x| + |y|)) [Kolmogorov—Levin]
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
o C(x,y) < C(x) + C(y) + O(log(|x| + ly[))
o C(x,y) < C(x) + C(y | x) + O(log(|x| + |y|))
@ C(x,y) = C(x) + C(y | x) = O(log(|x| + |y|)) [Kolmogorov—Levin]

Definition: mutual information
I(x:y):=C(y) — C(y | x)
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
o C(x,y) < C(x) + C(y) + O(log(|x| + ly[))
o C(x,y) < C(x) + C(y | x) + O(log(|x| + |y|))
@ C(x,y) = C(x) + C(y | x) = O(log(|x| + |y|)) [Kolmogorov—Levin]

Definition: mutual information

I(x:y):=C(y) = C(y [x) and I(x 1y [ z) := Cly [ 2) - Cly [ x.2)
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
o C(x,y) < C(x) + C(y) + O(log(|x| + ly[))
o C(x,y) < C(x) + C(y | x) + O(log(|x| + |y|))
@ C(x,y) = C(x) + C(y | x) = O(log(|x| + |y|)) [Kolmogorov—Levin]

Definition: mutual information
I(x:y):=C(y) = C(y [x) and I(x 1y [ z) := Cly [ 2) - Cly [ x.2)

Symmetry of the mutual information:
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
o C(x,y) < C(x) + C(y) + O(log(x| + ly)
@ C(x,y) < C(x) + C(y | x) + O(log(x| + ly))
@ C(x,y) = C(x) + C(y | x) = O(log(|x| + |y|)) [Kolmogorov—Levin]

Definition: mutual information
I(x:y):=C(y) = C(y [x) and I(x 1y [ z) := Cly [ 2) - Cly [ x.2)
Symmetry of the mutual information:

o I(x:y)=C(x)+ C(y) — C(x,y) = O(log(|x| + |y[))
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measure of information: Kolmogorov’s approach
Definition of Kolmogorov complexity:

C(x) = min{|p| : program p produced x}

C(x|]y) = min{|p| : program p produced x given y}

Information theory:
o C(x,y) < C(x) + C(y) + O(log(x| + ly)
@ C(x,y) < C(x) + C(y | x) + O(log(x| + ly))
@ C(x,y) = C(x) + C(y | x) = O(log(|x| + |y|)) [Kolmogorov—Levin]

Definition: mutual information
I(x:y):=C(y) = C(y [x) and I(x 1y [ z) := Cly [ 2) - Cly [ x.2)
Symmetry of the mutual information:

o I(x:y)=C(x)+ C(y) — C(x,y) = O(log(|x| + |y]))
=1I(y : x) £ O(log(|x| + [yl))
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Kolmogorov complexity: information inequalities

similar to Shannon’s case:
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Kolmogorov complexity: information inequalities

similar to Shannon’s case:

@ monotonicity:
C(x) < C(x,y) + O(1), cf. Cly |x) =0
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Kolmogorov complexity: information inequalities

similar to Shannon’s case:

@ monotonicity:
C(x) < Cx,y) + 0(1), cf. Cly [x) =0

@ subadditivity:
C(x,y) < C(x) + C(y) + O(log(|x| +[y])). cf. 1(x:y) = =O(log(lx| + |y[))
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Kolmogorov complexity: information inequalities

similar to Shannon's case:

@ monotonicity:

C(x) < C(x,y)+ O(1), cf. C(y|x) >0
@ subadditivity:

Clx,y) < C(x) + C(y) + O(log(|x| +Iyl)). cf- 1(x:y) = —O(log(|x] + [y1))
@ submodularity:

C(x,y,2z) + C(2) < C(x,2) + C(y, z) + O(log(|x| + |y])).
cf. I(x:y|z) > —O(log(|x| + |y| + |2]))
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Kolmogorov complexity: information inequalities
similar to Shannon's case:

@ monotonicity:
C(xz) < C(xzug) + O(1)
@ subadditivity:
C(xzug)) < C(xz) + C(xz) + O(log .. )
@ submodularity:
C(xzugur)) + Cxx) < C(xzuk) + C(xzuk) + O(log . . .)
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Kolmogorov complexity: information inequalities
similar to Shannon's case:

@ monotonicity:
C(xz) < C(xzug) + O(1)
@ subadditivity:
C(xzug)) < C(xz) + C(xz) + O(log .. )
@ submodularity:
C(xzugur)) + Cxx) < C(xzuk) + C(xzuk) + O(log . . .)

Theorem

The same classes of linear inequalities are true for Shannon entropy and
(up to a log-term) for Kolmogorov complexity.
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mutual information and structural properties
How to construct X = xy ...X2, and y = y1 ... ¥, such that
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mutual information and structural properties
How to construct X = xy ...X2, and y = y1 ... ¥, such that

C(x)=2n, C(y)=2n, I(x:y)=n?
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mutual information and structural properties
How to construct X = xy ...X2, and y = y1 ... ¥, such that

C(x)=2n, C(y)=2n, I(x:y)=n?

Example 1:
X1...Xop = Up...UW71...Wp
Yi---Yon = Vi...VpWi...Wj
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mutual information and structural properties
How to construct X = xy ...X2, and y = y1 ... ¥, such that

C(x)=2n, C(y)=2n, I(x:y)=n?
Example 1:

X1...Xop = Up...UW71...Wp
Yi---Yon = Vi...VpWi...Wj

Example 2: x,y € {0,1}" and
DistHamming(X,y) = 0.11...-(2n).
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mutual information and structural properties
How to construct X = xy ...X2, and y = y1 ... ¥, such that

C(x)=2n, C(y)=2n, I(x:y)=n?
Example 1:

X1...Xop = Up...UW71...Wp
Yi---Yon = Vi...VpWi...Wj

Example 2: x,y € {0,1}" and
DistHamming(X,y) = 0.11...-(2n).

Clx ly) ~ log (0.112-n(2n)> e
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mutual information and structural properties
How to construct X = xy ...X2, and y = y1 ... ¥, such that

C(x)=2n, C(y)=2n, I(x:y)=n?
Example 1:

X1...Xop = Up...UW71...Wp
Yi---Yon = Vi...VpWi...Wj

Example 2: x,y € {0,1}" and
DistHamming(X,y) = 0.11...-(2n).

2n
C(x |y) =~ log <0.11 _ (2n)> ~n

Example 3: finite field F with 2" elements
X = point on F? } §/
y = line on 2

line and point are incident %
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mutual information and structural properties
We have examples of x = x;...xo, and y = y1 ... y», such that

C(x)=2n, C(y)=2n, I(x:y)=n?

Example 1:
X1...Xpp = Up...UW71...Wp
Yi---Yon = Vi...VpWi...Wp
Example 2: x,y € {0,1}?" and DistHamming(X,y) = 0.11...-(2n).
Example 3: finite field F with 2" elements
x = point on F?
y = lineon F?
line and point are incident
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mutual information and structural properties
We have examples of x = x;...xo, and y = y1 ... y», such that

C(x)=2n, C(y)=2n, I(x:y)=n?

Example 1:

X1...Xpp = Up...UW71...Wp
Yi---Yon = Vi...VpWi...Wp

Example 2: x,y € {0,1}?" and DistHamming(X,y) = 0.11...-(2n).
Example 3: finite field F with 2" elements

x = point on F?
y = lineon F?
line and point are incident

y
does there exist a z as follows?

[aya
e C(z)~n v
@ C(z|x)~0 %
o C(z|y)=0

z
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mutual information and structural properties
We have examples of x = x;...xo, and y = y1 ... y», such that

C(x)=2n, C(y)=2n, I(x:y)=n?

Example 1:

X1...Xpp = Up...UW71...Wp

Yi---Yon = Vi...VpWi...Wp
Example 2: x,y € {0,1}?" and DistHamming(X,y) = 0.11...-(2n).
Example 3: finite field F with 2" elements

x = point on F?
y = lineon F?

line and point are incident

In general, what profiles A
for (x,y,2z) can we get v
for these (x,y) and various z? ‘A

z
AR. Different Views of Information 13 /20



secret key agreement
Alice holds x
Bob holds y
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secret key agreement

Alice holds x = x71...x2,
Bob holdsy =y1...yo,

C(x) =2n, C(y) =2n, I(x:y) =n.

Alice and Bob communication via a public channel and agree on a secret key w
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secret key agreement

Alice holds x = x71...x2,
Bob holdsy =y1...yo,

C(x) =2n, C(y) =2n, I(x:y) =n.
Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication_transcript) =~ 0
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Alice and Bob communication via a public channel and agree on a secret key w
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secret key agreement

Alice holds x = x71...x2,
Bob holdsy =y1...yo,

C(x) =2n, C(y) =2n, I(x:y) =n.

Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication_transcript) =~ 0

Example 1:
X1...Xop = Up...UW71...Wp
Yi---Yon = Vi...VpWi...Wj

Example 2: (x;,y;) is a sequence of 2n i.i.d. pairs,

prob[x; = 1] = 0.5, probly; = 1] = 0.5, prob[x; = y;] ~ 0.11
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secret key agreement

Alice holds x = x71...x2,
Bob holdsy =y1...yo,

C(x) =2n, C(y) =2n, I(x:y) =n.
Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication_transcript) =~ 0

Example 1:
X1...Xp0np = Up...UW71...Wp
Yi---Yon = Vi...VpWi...Wj

Example 2: (x;,y;) is a sequence of 2n i.i.d. pairs,
prob[x; = 1] = 0.5, prob[y; = 1] = 0.5, prob[x; = y;] = 0.11
Example 3: finite field F with 2" elements
X = point on F? } /
y = line on F?

line and point are incident %
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secret key agreement
Alice holds x and Bob holds y,

C(x) =2n, C(y)=2n, I(x:y) =n.
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secret key agreement
Alice holds x and Bob holds y,

C(x) =2n, C(y)=2n, I(x:y) =n.

Alice and Bob communication via a public channel and agree on a secret key w
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secret key agreement
Alice holds x and Bob holds y,

C(x) =2n, C(y)=2n, I(x:y) =n.
Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication_transcript) =~ 0

Theorem J

There exists a protocol that guarantees a secret key w such that C(w) = n.
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Alice holds x and Bob holds y,

C(x) =2n, C(y) =2n, I(x:y)=n.
Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication_transcript) =~ 0

Theorem

There exists a protocol that guarantees a secret key w such that C(w) = n.

Theorem
No protocol guarantees C(w) > n.

Theorem
@ There exists a protocol with C(w) = n where
Alice sends C(x | y) =~ n bits and Bob sends nothing.

@ There exists a protocol with C(w) = n where

Bob sends C(y | x) =~ n bits and Alice sends nothing.
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secret key agreement
Alice holds x and Bob holds y,

C(x) =2n, C(y) =2n, I(x:y)=n.
Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication_transcript) =~ 0

Theorem
@ There exists a protocol s.t. for all such x,y we get C(w) ~ n
Alice sends C(x | y) = n bits and Bob sends nothing.

@ There exists a protocol s.t. for all such x,y we get C(w) ~ n
Bob sends C(y | x) =~ n bits and Alice sends nothing.

@ for some x,y we cannot do anything substantially different.

Simple Example: finite field F with 2" elements

X = point on F? [ /

y = lineonF?

line and point are incident
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secret key agreement
Alice holds x and Bob holds y,

C(x) =2n, C(y)=2n, I(x:y) =n.
Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication_transcript) =~ 0

Interesting Example: finite field F with 2"

elements l /
X point on [F?
y = lineonF? %

line and point are incident

Theorem J

If C(w) ~ n then Alice sends ~ n bit or Bob sends ~ n bits.
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Alice holds x and Bob holds y,

C(x) =2n, C(y) =2n, I(x:y)=n.
Alice and Bob communication via a public channel and agree on a secret key w

secrecy means I(w : communication_transcript) =~ 0

Interesting Example: finite field F with 2"

elements l /
X point on [F?
y = lineon F? %

line and point are incident

Theorem J

If C(w) ~ n then Alice sends ~ n bit or Bob sends ~ n bits.

Lemma (An. Muchnik) pomnt A "¢
In such a complexity profile AV&
eitherao=nor3=n w
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combinatorics of the plane

. point x li
Lemma (An. Muchnik) me g
In such a complexity profile AVA
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4

AR. Different Views of Information



combinatorics of the plane

. point x, li
Lemma (An. Muchnik) mey
In such a complexity profile évA
eithera =nor 3 =n v
4

sketch of proof:

AR. Different Views of Information 18/20



combinatorics of the plane

. point x, li
Lemma (An. Muchnik) mey
In such a complexity profile AVA
eithera =nor 3 =n v
4

sketch of proof: w.lo.g. a > f3

Cix|z)=n—a, Cly|2)=n—p5, Clx,y [2) =2n—a = f3

A = {xX'isapointonF? : C(x'|z)<n—a}
B {y'isalineon 2 : C(y'|z)<n-p}
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B = {y'isalineonF? : C(y'|z)<n-p}

Counting Claim: Card(A) = 2"~ *+0(%gn) and Card(B) = 2"~ #+0(logn)

Geometric fact: number of incidences in A x B is < O (\/Card(A) : Card(B))
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combinatorics of the plane

Lemma (An. Muchnik) o iney
In such a complexity profile AVA

eithera =nor 3 =n

sketch of proof: w.lo.g. a > f3

Cix|z)=n—a, Cy|2z)=n—5, Clx,y|2) =2n—a—p

A
B

{x"isapointonF? : C(x'|z)<n—a}
{y'isalineon 2 : C(y'|z)<n-p}

Counting Claim: Card(A) = 2"~ *+0(%gn) and Card(B) = 2"~ #+0(logn)
Geometric fact: number of incidences in A x B is < O ( Card(A) - Card(B))

therefore:
n—a+n—p
Clx,y|2)

AR.

<
<

log[ no. of incidences in A x B ]
0.5log Card(A) + log Card(B) = 1.5n — 0.5cc — S8
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from combinatorics of the plane to secret sharing

Reminder: a finite plane; A = some set of lines and B = some set of points
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from combinatorics of the plane to secret sharing

Reminder: a finite plane; A = some set of lines and B = some set of points
Geometric fact: number of incidences in Ax Bis < O <«/Card(A) . Card(B))

or <0 (Card(A) : maT(s))
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either Alice sends C(x | y) bits or Bob sends C(y | x) bits
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from combinatorics of the plane to secret sharing

Reminder: a finite plane; A = some set of lines and B = some set of points
Geometric fact: number of incidences in Ax Bis < O («/Card(A) . Card(B))

or <0 (Card(A) : maT(s))

Conclusion: in a secret key agreement protocol, on some pairs of inputs,
either Alice sends C(x | y) bits or Bob sends C(y | x) bits

Comment: some subtler properties of planes imply some subtler bounds for
communication protocols

AR. Different Views of Information 19 /20



Proceed with the exercises!
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