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measure of information: Hartley’'s approach

Definition: the amount of information in a finite set A is x(S) = log Card(S).
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measure of information: Hartley’'s approach
Definition: the amount of information in a finite set A is x(S) = log Card(S).

Observation 1: For all S
A(S) = k- x(S).
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measure of information: Hartley’'s approach

Definition: the amount of information in a finite set A is x(S) = log Card(S).

Observation 1: For all S
A(S) = k- x(S).

Observation 2: Let A = set of binary strings of length N,
with pgN zeros and p;N ons (po + p1 = 1). Then

N!

x(A) = log o T (o)t
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Definition: the amount of information in a finite set A is x(S) = log Card(S).

Observation 1: For all S
A(S) = k- x(S).

Observation 2: Let A = set of binary strings of length N,
with pgN zeros and p;N ons (po + p1 = 1). Then

N!

x(A) = log o T (o)t

1 1
= (po log — + p1 log —> N + O(log N)
Po P1
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measure of information: Hartley’'s approach

Definition: the amount of information in a finite set A is x(S) = log Card(5).

Observation 1: For all §
A(S) = k- x(S).

Observation 2: Let A = set of binary strings of length N,
with pgN zeros and p;N ons (po + p1 = 1). Then

N!

A = log o R (o

1 1
= <po log — + p1 log > N + O(log N)
Po P1

Observation 3: Let B = set of strings of length N in the alphabet {a, b, ..., z},
with 12.7% letters ‘e, 9.1% letters ‘t', 8.2% letters ‘a’, 7.5% letters ‘o', ... Then

x(B) ~ 4.14N
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measure of information: Hartley’'s approach
Definition: the amount of information in a finite set S is x(S) = log Card(S).
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measure of information: Hartley’'s approach
Definition: the amount of information in a finite set S is x(S) = log Card(S).

Definition: If S C N x N, then
Xx1(S) = log Card(mS), x2(S) = log Card(m.S)

where 7;S denotes the projection of S onto the i-th coordinate.
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measure of information: Hartley’'s approach

Definition: the amount of information in a finite set S is x(S) = log Card(S).

Definition: If S C N x N, then

X1(S) = log Card(mS), x2(S) = log Card(m,S)
where 7;S denotes the projection of S onto the i-th coordinate.
Observation 1: x(S) < x1(S) + x2(S)
and x(5) = x1(S) + x2(5) iff S = (m5) x (m25)
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measure of information: Hartley’'s approach
Definition: the amount of information in a finite set S is x(S) = log Card(S).

Definition: If S C N x N, then

Xx1(S) = log Card(mS), x2(S) = log Card(m.S)
where 7;S denotes the projection of S onto the i-th coordinate.
Observation 1: x(S) < x1(S) + x2(S)
and x(5) = x1(5) + x2(5) iff § = (m ) x (m25)

Observation 2: if S C N x N x N, then x(5) < x1(S) + x2(S) + x3(5).
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measure of information: Hartley’'s approach
Definition: the amount of information in a finite set S is x(S) = log Card(S).

Definition: If S C N x N, then
X1(S) = log Card(mS), x2(S) = log Card(m,S)
where 7;S denotes the projection of S onto the i-th coordinate.
Observation 1: x(S) < x1(S) + x2(S)
and x(S) = x1(S) + x2(5) iff S = (mS) x (725)
Observation 2: if S C N x N x N, then x(5) < x1(S) + x2(S) + x3(5).
This is rephrasing of the claim Card(S) < Card(mS) - Card(mS) - Card(m3S).
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measure of information: Hartley’'s approach

Definition: the amount of information in a finite set S is x(S) = log Card(S).

Definition: If S C N x N, then

Xx1(S) = log Card(mS), x2(S) = log Card(m.S)
where ;S denotes the projection of S onto the i-th coordinate.
Observation 1: x(S) < x1(S) + x2(5)
and x(5) = x1(5) + x2(5) iff § = (m ) x (m25)

Observation 2: if S C N x N x N, then x(5) < x1(S) + x2(S) + x3(5).

This is rephrasing of the claim Card(S) < Card(mS) - Card(m,S) - Card(m3S).

Theorem (Loomis—Whitney) If S C N x N x N, then

@ 2-x(5) < x12(5) + x23(S) + x13(S).
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measure of information: Hartley’'s approach

Definition: the amount of information in a finite set S is x(S) = log Card(S).

Definition: If S C N x N, then

Xx1(S) = log Card(mS), x2(S) = log Card(m.S)
where ;S denotes the projection of S onto the i-th coordinate.
Observation 1: x(S) < x1(S) + x2(5)
and x(5) = x1(5) + x2(5) iff § = (m ) x (m25)

Observation 2: if S C N x N x N, then x(5) < x1(S) + x2(S) + x3(5).

This is rephrasing of the claim Card(S) < Card(mS) - Card(m,S) - Card(m3S).

Theorem (Loomis—Whitney) If S C N x N x N, then
@ 2 x(5) < x12(S) + x23(5) + x13(5)-

This inequality basically claims that
Card(S)? < Card(m12S) - Card(m13S) - Card(m235).

AR. Different Views of Information

3/21



measure of information: Hartley’'s approach

Definition: the amount of information in a finite set S is x(S) = log Card(S).

Definition: If S C N x N, then

Xx1(S) = log Card(mS), x2(S) = log Card(m.S)
where ;S denotes the projection of S onto the i-th coordinate.
Observation 1: x(S) < x1(S) + x2(5)
and x(5) = x1(5) + x2(5) iff § = (m ) x (m25)

Observation 2: if S C N x N x N, then x(5) < x1(S) + x2(S) + x3(5).

This is rephrasing of the claim Card(S) < Card(mS) - Card(m,S) - Card(m3S).

Theorem (Loomis—Whitney) If S C N x N x N, then
@ 2 x(S) < x12(S) + x23(S) + x13(5)-

Continuous version:

volume(S)? < area(m1,S) - area(m3S5) - area(mp35).
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Hartley’s information: toy applications

Question 1: There are 25 identical-looking coins, one of which is counterfeit and
lighter than the others. Using a balance scale without additional weights,
determine the least number of weighings needed to identify the counterfeit coin.
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Hartley’s information: toy applications

Question 1: There are 25 identical-looking coins, one of which is counterfeit and
lighter than the others. Using a balance scale without additional weights,
determine the least number of weighings needed to identify the counterfeit coin.

Simple: a strategy with 3 weighings.
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Hartley’s information: toy applications

Question 1: There are 25 identical-looking coins, one of which is counterfeit and
lighter than the others. Using a balance scale without additional weights,
determine the least number of weighings needed to identify the counterfeit coin.

Simple: a strategy with 3 weighings.
Proof of a lower bound: For a strategy with k operations
X(outcome) < x(1st weighing) + ...+ x(kst weighing) < log3+ ...+ log3

so k > (log 25)/(log 3) -
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Hartley’s information: toy applications

Question 1: There are 25 identical-looking coins, one of which is counterfeit and
lighter than the others. Using a balance scale without additional weights,
determine the least number of weighings needed to identify the counterfeit coin.
Simple: a strategy with 3 weighings.
Proof of a lower bound: For a strategy with k operations
X(outcome) < x(1st weighing) + ...+ x(kst weighing) < log3+ ...+ log3

k

so k > (log 25)/(log 3)

Question 2: There are 14 identical-looking coins, one of which is counterfeit and
differs in weight (either lighter or heavier) from the others. Using a balance scale
without additional weights, determine the least number of weighings needed to
identify the counterfeit coin.
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Hartley’s information: toy applications

Question 1: There are 25 identical-looking coins, one of which is counterfeit and
lighter than the others. Using a balance scale without additional weights,
determine the least number of weighings needed to identify the counterfeit coin.

Simple: a strategy with 3 weighings.
Proof of a lower bound: For a strategy with k operations
X(outcome) < x(1st weighing) + ...+ x(kst weighing) < log3+ ...+ log3

so k > (log 25)/(log 3) )

Question 2: There are 14 identical-looking coins, one of which is counterfeit and
differs in weight (either lighter or heavier) from the others. Using a balance scale
without additional weights, determine the least number of weighings needed to

identify the counterfeit coin.

This is an exercise!
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) = pilog —
i=1 Pi
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0

Properties:

e H(X) >0
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0

Properties:

e H(X) >0, with equality iff

AR. Different Views of Information 5/21



measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0

Properties:

e H(X) >0, with equality iff p = 1 for some i
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0

Properties:

e H(X) >0, with equality iff p = 1 for some i
(immediately form the definition)
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0

Properties:

e H(X) >0, with equality iff p = 1 for some i
(immediately form the definition)

o H(X) <logk
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0

Properties:

e H(X) >0, with equality iff p = 1 for some i
(immediately form the definition)

o H(X) < log k, with equality iff
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0

Properties:

e H(X) >0, with equality iff p = 1 for some i
(immediately form the definition)

o H(X) < log k, with equality iff p; = -+ = px =

x|
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) = pilog —
i=1 Pi

with the usual convention 0 log § = 0

Properties:

e H(X) >0, with equality iff p = 1 for some i
(immediately form the definition)

o H(X) < log k, with equality iff p; = -+ = px = %

(proof: concavity of the logarithm + Jensen's inequality).
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measure of information: Shannon’s approach
Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1

H(X) = ZP:‘ log —
i pi

with the usual convention 0 - Iog(—l) =0
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
pa pi

with the usual convention 0 - Iog(—l) =0

two classical theorems:

@ for all uniquely decodable binary code ¢y, ..., ck

k

;p,- -length(¢;) > H(X)

@ there exists a uniquely decodable binary code ¢y, ..., ¢k such that

k

>~ pi - length(c;) < H(X) +1
i=1
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) = pilog p
i=1 !

with the usual convention O - Iog% =0

two classical theorems:

@ for all uniquely decodable binary code ¢y, ..., ck

k

;Pi -length(c;) > H(X)

@ there exists a uniquely decodable binary code ¢y, ..., ¢k such that

k

> pi-length(c;) < H(X) +1
i=1

slightly informally: the value of H(X) gives the optimal compression rate
o7



measure of information: Shannon’s approach
Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) := > pilog p
i=1 !

AR. Different Views of Information

7/21



measure of information: Shannon’s approach
Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) := > pilog p
i=1 !

cf. the proof in suppl. materials:
2H(X,Y,Z) < H(X,Y) +H(X,Z) + H(Y, 2).
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
i1 Pi
cf. the proof in suppl. materials:

2H(X,Y,Z) < H(X,Y)+H(X,Z)+ H(Y, Z).

Loomis—Whitney revisited: if S C N x N x N, then
Card(S)? < Card(m1»S) - Card(m3S) - Card(m3S).
2-x(5) < x12(S) + x23(S) + x13(5)-
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
i=1 Pi
cf. the proof in suppl. materials:
2H(X,Y,Z) <H(X,Y) + H(X,Z) + H(Y, Z).
Loomis—Whitney revisited: if S C N x N x N, then

Card(S)? < Card(m1»S) - Card(m3S) - Card(m3S).

2-x(S) < x12(S) + x23(S) + x13(5)-
Sketch of the proof: sample (X, Y, Z) uniformly in S
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
i=1 Pi
cf. the proof in suppl. materials:
2H(X,Y,Z) <H(X,Y) + H(X,Z) + H(Y, Z).
Loomis—Whitney revisited: if S C N x N x N, then

Card(S)? < Card(m1»S) - Card(m3S) - Card(m3S).

2-x(S) < x12(S) + x23(S) + x13(5)-
Sketch of the proof: sample (X, Y, Z) uniformly in S

2-logCard(S) = 2H(X,Y,Z)
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog p
i=1 !

cf. the proof in suppl. materials:
2H(X,Y,Z) < H(X,Y) +H(X,Z) + H(Y, 2).

Loomis—Whitney revisited: if S C N x N x N, then
Card(S)? < Card(m1»S) - Card(m3S) - Card(m3S).

2-x(S) < x12(S) + x23(S) + x13(5)-
Sketch of the proof: sample (X, Y, Z) uniformly in S
2 - log Card(S) 2H(X,Y,Z)
H(X, Y) + H(X, Z) + H(Y, Z)
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog p
i=1 !

cf. the proof in suppl. materials:
2H(X,Y,Z) < H(X,Y) +H(X,Z) + H(Y, 2).

Loomis—Whitney revisited: if S C N x N x N, then
Card(S)? < Card(m1»S) - Card(m3S) - Card(m3S).

2-x(S) < x12(S) + x23(S) + x13(5)-
Sketch of the proof: sample (X, Y, Z) uniformly in S
2 - log Card(S) 2H(X,Y,Z)
H(X,Y)+H(X,Z)+H(Y, 2)
log Card(m12(S)) + log Card(m23(S)) + log Card(mi3(S))

INIA
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities py, ...

K
1

H(X):=> pi Iog;
i=1 !

with the usual convention 0 - Iog(—l) =0
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities ps, ..., pk

K
1

H(X):=> pi Iog;
i=1 !

with the usual convention 0 - Iog(—l) =0
For jointly distributed X, Y we have:

H(X), H(Y), H(X,Y).
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities py, ...

K
1

H(X):=> pi Iog;
i=1 !

with the usual convention 0 - Iog(—l) =0
For jointly distributed X, Y we have:

H(X), H(Y), H(X,Y).
Properties:

o H(X,Y) < H(X)+H(Y)
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities py, ...

K
1

H(X):=> pi Iog;
i=1 !

with the usual convention 0 - Iog(—l) =0
For jointly distributed X, Y we have:

H(X), H(Y), H(X,Y).
Properties:
e H(X,Y) <H(X)+H(Y)
e H(X,Y)=H(X)+H(Y), iff X and Y are independent
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities py, ...

K
1

H(X):=> pi Iog;
i=1 !

with the usual convention 0 - Iog(—l) =0
For jointly distributed X, Y we have:
H(X), H(Y), H(X, Y).
Properties:
e H(X,Y) <H(X)+H(Y)
e H(X,Y)=H(X)+H(Y), iff X and Y are independent
An Exercise !
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measure of information: Shannon’s approach
Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) := > pilog —
i=1 Pi
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
i=1 Pi

Definition: For jointly distributed X, Y, for each fixed value b of Y we have
H(X|Y =b).
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
i=1 Pi

Definition: For jointly distributed X, Y, for each fixed value b of Y we have
H(X|Y =b).
Conditional Shannon entropy of X given Y is

H(X | Y):=> H(X|Y =b)Pr[Y = b].
b
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

H(X Z pi IOg .

Definition: For jointly distributed X, Y, for each fixed value b of Y we have
H(X|Y =b).
Conditional Shannon entropy of X given Y is

H(X | Y):=> H(X|Y =b)Pr[Y = b].

b
Properties:
o H(X,Y)=H(X|Y)+H(Y)
e H(X|Y)>0
AR. Different Views of Information
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H(X Z pi IOg .

Definition: For jointly distributed X, Y, for each fixed value b of Y we have
H(X|Y =b).
Conditional Shannon entropy of X given Y is

H(X | Y):=> H(X|Y =b)Pr[Y = b].
b

Properties:
o H(X,Y)=H(X|Y)+H(Y),
e H(X | Y)>0, with H(X | Y) =0 iff X = Function(Y)
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H(X Z pi IOg .

Definition: For jointly distributed X, Y, for each fixed value b of Y we have
H(X|Y =b).
Conditional Shannon entropy of X given Y is
H(X | Y):=> H(X|Y =b)Pr[Y = b].
b
Properties:
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e H(X | Y)>0, with H(X | Y) =0 iff X = Function(Y)
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measure of information: Shannon’s approach
Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

k
1
H(X) := > pilog —
i=1 Pi
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
i=1 Pi

Definition: For jointly distributed X, Y, the information on Y contained in X is

I(X : Y)=H(Y) - H(Y | X).
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
i=1 Pi

Definition: For jointly distributed X, Y, the information on Y contained in X is
I(X:Y)=H(Y)—-H(Y | X).
Properties:
o I(X:Y)=I(Y:X)=H(X)+H(Y)-H(X,Y),

AR. Different Views of Information 10/21



measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1
H(X) := > pilog —
i=1 Pi

Definition: For jointly distributed X, Y, the information on Y contained in X is
I(X:Y)=H(Y)—-H(Y | X).
Properties:
o I(X:Y)=I(Y:X)=H(X)+H(Y)-H(X,Y),
o I(X:Y)<H(X), and I(X : Y) < H(Y),
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Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

K 1
=Y pilog—
P pi

Definition: For jointly distributed X, Y, the information on Y contained in X is
I(X:Y)=H(Y)—-H(Y | X).
Properties:
o I(X:Y)=I(Y:X)=H(X)+H(Y)-H(X,Y),
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e I(X:Y)>0
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H(X) := > pilog .
i=1 !

Definition: For jointly distributed X, Y, the information on Y contained in X is
I(X:Y)=H(Y)—-H(Y | X).
Properties:
o I(X:Y)=I(Y:X)=H(X)+H(Y)-H(X,Y),
o I(X:Y)<H(X), and I(X : Y) < H(Y),
@ I(X:Y)>0, withI(X:Y)=0iff X IL Y (independent),
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

K 1
=Y pilog—
— pi

Definition: For jointly distributed X, Y, the information on Y contained in X is

I(X : Y)=H(Y) - H(Y | X).

Properties:
o I(X:Y)=LY:X)=H(X)+H(Y)-H(X,Y),
I(X:Y)<HX ) and I(X : Y) < H(Y),
I(X:Y)>0, with I(X : Y)=0iff X IL Y (independent),
I(X : Y)=H(X) if and only if X = Function(Y),

AR. Different Views of Information 10/21



measure of information: Shannon’s approach
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For a random variable X taking k values with probabilities p1, ..., px

K 1
=Y pilog—
— pi

Definition: For jointly distributed X, Y, the information on Y contained in X is
I(X:Y)=H(Y)—-H(Y | X).

Properties:
o I(X:Y)=LY:X)=H(X)+H(Y)-H(X,Y),
o I(X:Y)<H(X ) and I(X : Y) < H(Y),
@ I(X:Y)>0, withI(X:Y)=0iff X IL Y (independent),
o I(X : Y)=H(X) if and only if X = Function(Y),
o I(X: X)=H(X).
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

K 1
=Y pilog—
— pi

Definition: For jointly distributed X, Y, the information on Y contained in X is

I(X : Y)=H(Y) - H(Y | X).

Properties:
o I(X:Y)=LY:X)=H(X)+H(Y)-H(X,Y),
o I(X:Y)<H(X ) and I(X : Y) < H(Y),
@ I(X:Y)>0, withI(X:Y)=0iff X IL Y (independent),
o I(X : Y)=H(X) if and only if X = Function(Y),
o I(X: X)=H(X).

An Exercise !
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measure of information: Shannon’s approach
Definition: (Shannon entropy)

For a random variable X taking k values with probabilities ps, ...

K
1

H(X) == ZPI log o
i=1 !
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

K
1

H(X) == ZPI log o
i=1 !

Definition: conditional mutual information between X and Y given Z
Ist definition: I(X : Y | Z) =3 I(X:Y | Z=c) Pr[Z =],

2nd definition: I(X : Y | Z):=H(Y | Z) —H(Y | X, Z).

3rd definition: I(X : Y | Z):=H(X | Z)+ H(Y | Z) —H(X, Y| Z).
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k

1

H(X) := Zpi log o
i=1 !

Definition: conditional mutual information between X and Y given Z
Ist definition: I(X : Y | Z) =3 I(X:Y | Z=c) Pr[Z =],

2nd definition: I(X : Y | Z):=H(Y | Z) —H(Y | X, Z).

3rd definition: I(X : Y | Z) :=H(X | Z)+H(Y | Z) - H(X, Y | 2).

Exercise: these three definitions are equivalent.
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, ..., px

k
1

H(X) := Zpi log o
i=1 !

Definition: conditional mutual information between X and Y given Z
Ist definition: I(X : Y | Z) =3 I(X:Y | Z=c) Pr[Z =],
2nd definition: I(X : Y | Z):=H(Y | Z) —H(Y | X, Z).
3rd definition: I(X : Y | Z) :=H(X | Z)+H(Y | Z) - H(X, Y | 2).
Exercise: these three definitions are equivalent.
Properties:

e I(X:Y]|Z) >0,

o I(X:Y|Z2)=(Y:X]|2),

o I(X:Y|2Z)=H(X,Z)+H(Y,Z)-H(X,Y,Z)—H(2).
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measure of information: Shannon’s approach

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities py, ...

K
1

H(X) := Zpi log —
i=1 pi
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities ps, ..., px

K

1

H(X) := Zpi log —
i=1 pi

Another Definition (triple mutual information):

I(X:Y:2) = I(X:Y)-H(X:Y]|2)
= LXY:2Z)-IX:Z|Y)-1(Y:Z]|X)

= H(X)+H(Y)+H(Z) - H(X, Y) - H(X, Z) - H(Y, Z)
+H(X,Y,2)

12/21
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities ps, ..., px

k

1

H(X) := Zpi log o
i=1 !

Another Definition (triple mutual information):

I(X:Y:2) = I(X:Y)-H(X:Y]|2)
= IXY:Z2)-I(X:Z|Y)-I(Y:Z]|X)

= H(X)+H(Y)+H(Z) - H(X, Y) - H(X, Z) - H(Y, Z)
+H(X,Y,2)

Exercise: these three definitions are equivalent.
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Shannon entropy: entropic profiles
* For a random variable X the value H(X) can be any non-negative number
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Shannon entropy: entropic profiles
* For a random variable X the value H(X) can be any non-negative number

* For jointly (X1, X5) we have

X1
H(X1), H(X), H(X1, X2)
H(X: | Xz), H(Xz | X1)
I(Xl : XQ)
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Shannon entropy: entropic profiles
* For a random variable X the value H(X) can be any non-negative number

* For jointly (X1, X5) we have

X1
H(X1), H(X), H(X1, X2)
H(X1 | X2), H(X2 | X1)
I(Xl : XQ)
but only 3 parameters are enough
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Shannon entropy: entropic profiles
* For a random variable X the value H(X) can be any non-negative number

* For jointly (X1, X2) we have
( ! 2) X1 X2

H(X1), H(X2), H(X1, X2)
H(X1 [ X2), H(X2 | X1)
I(Xl : XQ)

but only 3 parameters are enough
e.g. H(Xl),H(XQ),H(Xl,Xz) allow to find H(Xl | Xg), H(X2 | Xl), I(Xl . X2)
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Shannon entropy: entropic profiles

* For a random variable X the value H(X) can be any non-negative number

* For jointly (X1, X5) we have X, X,
H(X1), H(X2), H(X1, X2)

H(X: [ X2), H(X2 | X1)

I(Xl : XQ)

but only 3 parameters are enough

e.g. H(Xl),H(XQ),H(Xl,Xz) allow to find H(Xl | Xg), H(X2 | Xl), I(Xl . X2)
H(X; | Xo) = H(X1, Xo) — H(X2),

H(X, | X1) = H(X1, Xo) — H(Xy),

I(Xl . X2) = H(Xl) + H(X2) — H(Xl, X2)
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Shannon entropy: entropic profiles
* For a random variable X the value H(X) can be any non-negative number

* For jointly (X1, X2) we have
( ! 2) X1 X2

H(X1), H(X2), H(X1, X2)
H(X1 [ X2), H(X2 | X1)
I(Xl : XQ)

but only 3 parameters are enough
e.g. H(Xl),H(XQ),H(Xl,Xz) allow to find H(Xl | Xg), H(X2 | Xl), I(Xl . X2)
or H(Xy | X2), H(Xz | X1) and I(X; : X3) allow to find H(X7), H(X2), H(X1, X2).
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Shannon entropy: entropic profiles

* For a random variable X the value H(X) can be any non-negative number

* For jointly (X1, X5) we have X, X,
H(X1), H(X2), H(X1, X2)

H(X: [ X2), H(X2 | X1)

I(Xl : XQ)

but only 3 parameters are enough
e.g. H(Xl),H(XQ),H(Xl,Xz) allow to find H(Xl | Xg), H(X2 | Xl), I(Xl . X2)
or H(Xy | X2), H(Xz | X1) and I(X; : X3) allow to find H(X7), H(X2), H(X1, X2).
H(Xl) = H(XI‘X2) + I(Xl . XQ),
H(Xg) = H(Xz‘Xl) + I(Xl . X2),
H(Xl,XQ) = H(Xl | X2) + I(Xl . X2) + H(X2 | Xl)
e



Shannon entropy: entropic profiles
* For a random variable X the value H(X) can be any non-negative number

* For jointly (X1, X2) we have
( ! 2) X1 X2

H(X1), H(X2), H(X1, X2)
H(X1 [ X2), H(X2 | X1)
I(Xl : XQ)

but only 3 parameters are enough
e.g. H(Xl),H(XQ),H(Xl,Xz) allow to find H(Xl | Xg), H(X2 | Xl), I(Xl . X2)
or H(Xy | X2), H(Xz | X1) and I(X; : X3) allow to find H(X7), H(X2), H(X1, X2).

constraints: 0 < H(X;), H(X2) < H(Xq, X2) < H(X1) + H(X?)
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Shannon entropy: entropic profiles
* For a random variable X the value H(X) can be any non-negative number

* For jointly (X1, X2) we have
( ! 2) X1 X2

H(X1), H(X2), H(X1, X2)
H(X1 [ X2), H(X2 | X1)
I(Xl : XQ)

but only 3 parameters are enough
e.g. H(Xl),H(XQ),H(Xl,Xz) allow to find H(Xl | Xg), H(X2 | Xl), I(Xl . X2)
or H(Xy | X2), H(Xz | X1) and I(X; : X3) allow to find H(X7), H(X2), H(X1, X2).
constraints: 0 < H(X;), H(X2) < H(Xq, X2) < H(X1) + H(X?)

>0,

equivalently: H(Xl ‘ Xz) R H(X2 | Xl) >0, I(Xl : X2) >0
—



Shannon entropy: entropic profiles
* For jointly (X1, X3, X3) we have

H(Xl)v H(X2)7 H(X3) %
H(X17X2)7 H(XlaX3)a H(X27X3)7

H(Xq1, X, X3), ‘ \
H(X: | X2), H(Xz | X41), ..., @@
H(X; | X2, X3),.. .,

H(X1, X2 | X3), ...,

I(Xy : Xa), I(X1: X3), I(Xz: X3)

I(Xy 0 XoX3), I(Xo - X0X3), I( X3 : X1.X3)

(X1: X2 | X3), I(X1: X5 | Xa), I(Xa: X5 | X1)
(Xy: Xa: X3)

=

I
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Shannon entropy: entropic profiles
* For jointly (X1, X3, X3) we have

H(X1), H(X2), H(X3) % *
H(Xq, X2), H(X1, X3), H(Xz, X3),

H( Xy, X2, X3),

H(X1 [ X2), H(X2 [ X1), ..., v

H(X: | X2, X3), .-+,

H(X1, X2 | X3), ...,
I(X1 . Xg), I(Xl : )(3)7 I(X2 . X3)

I(X1 . X2X3), I(X2 : X1X3), I(X3 . X1X3)
I(Xl . X2 ‘ X3), I(Xl IX3 | )(2)7 I(X2 . X3 | Xl) *
I(X]_ . X2 . X3)

but only 7 parameters are enough:
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Shannon entropy: entropic profiles
* For jointly (X1, X3, X3) we have

H(X1), H(X,), H(Xs) % "
H(X1, X2), H(X1, X3), H(X2, X3),

H(X1, X2, X3),

H(X1 [ X2), H(X2 [ X1), ..., v

H(X1 | X, X3), - .,

H(X1, X | X3), ...,

I(X1 . XQ), I(Xl : )(3)7 I(X2 . X3)

I(X1 . X2X3), I(X2 : X1X3), I(X3 . X1X3)
I(Xl . X2 ‘ X3), I(Xl IX3 | )(2)7 I(X2 . X3 | Xl) *
I(X]_ . X2 . X3)

but only 7 parameters are enough:

e.g. H(X1),H(X2),... allow to find all other quantities
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Shannon entropy: entropic profiles
* For jointly (X1, X3, X3) we have

H(Xl)v H(X2)7 H(X3) %
H(X17X2)7 H(XlaX3)a H(X27X3)7

H(Xq1, X, X3), ‘ \
H(X: | X2), H(Xz | X41), ..., é@
H(X; | X2, X3),.. .,

H(X1, X2 | X3), ...,
I(X1 . XQ), I(Xl : )(3)7 I(X2 . X3)

I(X1 . X2X3), I(X2 : X1X3), I(X3 . X1X3)
I(Xl . X2 ‘ X3), I(Xl IX3 | )(2)7 I(X2 . X3 | Xl) *
I(X]_ . X2 . X3)

but only 7 parameters are enough:

e.g. H(X1),H(X2),... allow to find all other quantities
or H(X1|X2,X3)7 . I(Xl : X2 I )(3)7 . I(Xl . X2 . X3)
allow to find all other quantities
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Shannon entropy: entropic profiles
* For jointly (X1, X3, X3) we have

Xu
(
H(XlaXZ)a H(X17X3)7 H(X27X3)a
H(X17X27X3),
H(X1 | X2, X3), ...,

7 parameters define the profile:
e.g. H(X1),H(Xz),... allow to find all other quantities

or H(X1|X27X3), [P I(Xl . X2 | )(3)7 P I(Xl . X2 . X3)
allow to find all other quantities
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Shannon entropy: entropic profiles
* For jointly (X1, X3, X3) we have

Xu
(
H(XlaXZ)a H(X17X3)7 H(X27X3)a
H(X17X27X3)7
H(X1 | X2, X3), ...,

7 parameters define the profile:
e.g. H(X1),H(Xz),... allow to find all other quantities

or H(X1|X27X3), [P I(Xl . X2 | )(3)7 P I(Xl . X2 . X3)
allow to find all other quantities

9 constraints: H(X1|X2,X3) >0,..., I(Xl : Xz) >0,... I(Xl : X5 | X3) >0,...
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Shannon entropy: entropic profiles
* For jointly (X1, X3, X3) we have

X1

( ), HOG) A
H(Xq1, X2), H(X1, X3), H(X2, X3),

H(Xy, X2, X3), v

H(Xy | X2, X3), ..+, é@

7 parameters define the profile:
e.g. H(X1),H(Xz),... allow to find all other quantities
or H(X1|X27X3), [P I(Xl . X2 | )(3)7 P I(Xl . X2 . X3)
allow to find all other quantities

9 constraints: H(X1|X2,X3) >0,..., I(Xl : Xz) >0,... I(Xl : X5 | X3) >0,...

Exercise: no other inequalities for entropies of (X3, Xz, X3)
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Shannon entropy: entropic profiles

* For jointly distributed (X1, ..., X,) we have

H(X1), H(X,),...
H(X1, X2), H(X1, X3),...,
H(Xq, X2, X3), . ..
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Shannon entropy: entropic profiles

* For jointly distributed (Xi,..., X,) we have

H(X1), H(X),...
H(XI;XZ)a H(X17X3)7 R}
H(Xq, X2, X3), . ..

2" — 1 parameters that define the profile
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Shannon entropy: entropic profiles

* For jointly distributed (Xi,..., X,) we have

H(X1), H(X),...
H(XI;XZ)a H(X17X3)7 R}
H(Xq, X2, X3), . ..

2" — 1 parameters that define the profile

classical constraints:
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Shannon entropy: entropic profiles
* For jointly distributed (Xi,...,X,) we have

H(X1), H(X,),...
H(X1, X2), H(X1, X3),...,
H(Xq, X3, X3), . ..

2" — 1 parameters that define the profile

classical constraints:

@ monotonicity:
H(X, ... X;,) <H(X,...X;, X, ...X.)
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Shannon entropy: entropic profiles
* For jointly distributed (Xi,...,X,) we have
H(X,), H(X), ...

H(Xy, X2), H(X1, X3),...,
H(Xq, X3, X3),. ..

2" — 1 parameters that define the profile

classical constraints:

@ monotonicity:
H(X, X ) < H()(,'1 "'Xim)<jl )<Js)

m)] =

@ concavity:

H(X, .. 'Xim)<j1 . )<Js) < I‘I()(,'1 . ..X,’m) + H()g1 ..
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Shannon entropy: entropic profiles
* For jointly distributed (X,...,X,) we have

H(Xy), H(Xy),...
H(Xy, X3), H(X1, X3),...,
H(X1, X2, X3), ...

2" — 1 parameters that define the profile

classical constraints:

@ monotonicity:

H(X;, ... X)) <H(X, ... X, X ...X.)
@ concavity:

H(X, ... X, Xj, ... X)) <H(X, ... X)) +H(X;,...X.)
@ submodularity:

H()(,‘1 . "Xim)<jl .. ')<jstl .. ~Xk1>) +H(Xk1 ...Xk,) <
SH(X, .. Xo Xe X))+ H(X, - X X - X0)
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Shannon entropy: entropic profiles
* For jointly distributed (X,...,X,) we have

H(Xy), H(Xy),...
H(X1, X2), H(X1,X3),...,
H(X1, X2, X3), ...

2" — 1 parameters that define the profile

classical constraints:
for M ={h,...,in} we denote H(Xz) = H(X;, ... X;,)
@ monotonicity:
H(Xz) < H(Xzug) or equivalently H(X; | Xz) > 0
@ concavity:
H(Xzu7) < H(Xz) + H(X7) or equivalently I(X7 : X7) >0
@ submodularity:

H(Xzuzux) + H(Xk) < H(Xzux) + H(X7uk)
or equivalently I(Xz : X7 | Xx) > 0.
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Shannon entropy: entropic profiles
* For jointly distributed (X1, ..., X,) we have

H(X), H(X2),. ..
H(X1, Xo), H(X1, X3), . ..,
H(X1, X2, X3), - ..
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Shannon entropy: entropic profiles
* For jointly distributed (X,...,X,) we have

H(X1), H(X?),...

H(X1, Xo), H(X1, Xs), ...,
H(X1, X2, X3), - ..

2" — 1 parameters that define the profile
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Shannon entropy: entropic profiles
* For jointly distributed (X,...,X,) we have

H(X1), H(X?),...
H(Xy, X2), H(X1, X3),...,
H(Xq, X3, X3), . ..

2" — 1 parameters that define the profile

Shannon, the 1940s:
o H(X7 | Xz) >0
o I(Xz:X7)>0
o I(Xz: X7 | Xc)>0
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Shannon entropy: entropic profiles
* For jointly distributed (X,...,X,) we have

H(X1), H(X?),...
H(Xy, X2), H(X1, X3),...,
H(Xq, X3, X3), . ..

2" — 1 parameters that define the profile

Shannon, the 1940s:
o H(X7 | Xz) >0
o I(Xz:X7)>0
o I(Xz: X7 | Xc)>0

Question: Are there any other inequalities?
AR.

Different Views of Information 17 /21



Shannon entropy: entropic profiles
* For jointly distributed (X,...,X,) we have

H(X1), H(X?),...
H(Xy, X2), H(X1, X3),...,
H(Xq, X3, X3), . ..

2" — 1 parameters that define the profile

Shannon, the 1940s:
o H(X7 | Xz) >0
o I(Xz:X7)>0
o I(Xz: X7 | Xc)>0

Question: Are there any other inequalities?

Zhang—Yeung 1998: Yes, another inequality for n = 4 random variables!
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Shannon entropy: entropic profiles

* For jointly distributed (X,...,X,) we have
H(X1), H(X?),...

H(Xy, X2), H(X1, X3),...,

H(Xq, X3, X3), . ..

2" — 1 parameters that define the profile

Shannon, the 1940s:
o H(X7 | Xz) >0
o I(Xz:X7)>0
o I(Xz: X7 | Xc)>0

Question: Are there any other inequalities?
Zhang—Yeung 1998: Yes, another inequality for n = 4 random variables!

Matus 2007: infinitely many inequalities with n > 4 random variables!!
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Shannon entropy: entropic profiles

* For jointly distributed (X, ..., X,) we have

H(X1), H(X?),... H(X1, X2), H(X1, X3),..., H(X1, X2, X3),... ...

AR. Different Views of Information



Shannon entropy: entropic profiles

* For jointly distributed (Xi,...,X,) we have
H(X1), H(X2),... H(X1, X2), H(X1, X3),..., H(X1, X2, X3), ... ...

this vector of 2" — 1 reals = an entropic profile
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Shannon entropy: entropic profiles

* For jointly distributed (Xi,...,X,) we have
H(X1), H(X?),... H(X1, X2), H(X1, X3),..., H(X1, X2, X3),... ...
this vector of 2" — 1 reals = an entropic profile

Notation: P, := entropic profiles for all (Xi,...,X,)
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Shannon entropy: entropic profiles

* For jointly distributed (Xi,...,X,) we have

H(X1), H(Xy),... H(X1, X2), H(X1, X3),..., H(X1, X2, X3),... ...
this vector of 2" — 1 reals = an entropic profile

Notation: P, := entropic profiles for all (Xi,...,X,)

Theorem. P, (topological closure) is a convex cone.

AR. Different Views of Information 18 /21



Shannon entropy: entropic profiles

* For jointly distributed (Xi,...,X,) we have

H(X1), H(Xy),... H(X1, X2), H(X1, X3),..., H(X1, X2, X3),... ...
this vector of 2" — 1 reals = an entropic profile

Notation: P, := entropic profiles for all (Xi,...,X,)

Theorem. P, (topological closure) is a convex cone.

Exercise: prove it.
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Shannon entropy: entropic profiles

* For jointly distributed (Xi,...,X,) we have

H(X1), H(Xy),... H(X1, X2), H(X1, X3),..., H(X1, X2, X3),... ...
this vector of 2" — 1 reals = an entropic profile

Notation: P, := entropic profiles for all (Xi,...,X,)

Theorem. P, (topological closure) is a convex cone.

Exercise: prove it.

Fact:

@ the case n < 3 is simple : Py, P», P3 are defined by Shannon's inequalities
H(Xj | XI) Z O, I(XI . XJ) Z 0, I(XI . Xj | XIC) Z 0

@ the case n >4 is hard : P, is not polyhedral
(and not filly understood)
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Shannon entropy: symmetric key encryption

setting:

@ Sender and Receiver sample a common secret key
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@ Sender wants to send a random message
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setting:

@ Sender and Receiver sample a common secret key
@ Sender wants to send a random message

@ Sender transmits ciphertext = Enc(message, key)
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Shannon entropy: symmetric key encryption

setting:

@ Sender and Receiver sample a common secret key
@ Sender wants to send a random message
@ Sender transmits ciphertext = Enc(message, key)

@ Receivers computes message = Dec(ciphertext, key)
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Shannon entropy: symmetric key encryption

setting:

@ Sender and Receiver sample a common secret key
@ Sender wants to send a random message
@ Sender transmits ciphertext = Enc(message, key)

@ Receivers computes message = Dec(ciphertext, key)

requirements:
o ciphertext is a function of (message, key)
@ message is a function of (ciphertext, key)

@ message and ciphertext are independent
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Shannon entropy: symmetric key encryption
setting:
@ Sender and Receiver sample a common secret key
@ Sender wants to send a random message
@ Sender transmits ciphertext = Enc(message, key)

@ Receivers computes message = Dec(ciphertext, key)

requirements:
@ ciphertext is a function of (message, key)
@ message is a function of (ciphertext, key)

@ message and ciphertext are independent

solution: Vernam's scheme / one-time pad,
where message, key, ciphertext € {0,1}"

@ ciphertext = bitwise XOR of message and key
@ key = bitwise XOR of message and ciphertext
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Shannon entropy: symmetric key encryption
setting:

@ Sender and Receiver sample a common secret key

@ Sender wants to send a random message

@ Sender transmits ciphertext = Enc(message, key)

@ Receivers computes message = Dec(ciphertext, key)
requirements:

@ ciphertext is a function of (message, key)

@ message is a function of (ciphertext, key)

@ message and ciphertext are independent

Theorem (Shannon): H(key) > H(message)
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Shannon entropy: perfect secret sharing (threshold scheme)
setting: fix integer numbers n and t < n.

@ Dealer samples a secret key Sp and shares Sy,...5,

@ for i =1,...,n the i-th participant gets the share S;

@ correctness: every t participants together can compute Sy
H(So | S;,-..S,)=0

@ security: every < (t — 1) participants together have no information on Sy
H(So | S --- Sj-y) = H(S)
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Shannon entropy: perfect secret sharing (threshold scheme)
setting: fix integer numbers n and t < n.

@ Dealer samples a secret key Sp and shares Sy,...5,

@ for i =1,...,n the i-th participant gets the share S;

@ correctness: every t participants together can compute Sy
H(So | S;,-..S,)=0

@ security: every < (t — 1) participants together have no information on Sy
H(So | S --- Sj-y) = H(S)

solution (Shamir) : fix a field F (with > n elements)
fix elements xp, x1,...,x, € F

Dealer samples a random polynomial
P(x)=ay+aix+...+a_1x""LoverF

secret key Sp := P(xp)
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Shannon entropy: perfect secret sharing (threshold scheme)
setting: fix integer numbers n and t < n.

@ Dealer samples a secret key Sp and shares Sy,...5,

@ for i =1,...,n the i-th participant gets the share S;

@ correctness: every t participants together can compute Sy
H(So | S;,-..S,)=0

@ security: every < (t — 1) participants together have no information on Sy
H(So | S --- Sj-y) = H(S)

solution (Shamir) : fix a field F (with > n elements)
fix elements xp, x1,...,x, € F

Dealer samples a random polynomial
P(x)=ay+aix+...+a_1x""LoverF
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Shannon entropy: perfect secret sharing (threshold scheme)
setting: fix integer numbers n and t < n.

@ Dealer samples a secret key Sp and shares Sy,...5,

@ for i =1,...,n the i-th participant gets the share S;

@ correctness: every t participants together can compute Sy
H(So | S;,-..S,)=0

@ security: every < (t — 1) participants together have no information on Sy
H(So | S --- Sj-y) = H(S)

solution (Shamir) : fix a field F (with > n elements)
fix elements xp, x1,...,x, € F

Dealer samples a random polynomial
P(x)=ay+aix+...+a_1x""LoverF

secret key Sp := P(xo) shares
Si = P(x;)

Exercise: prove correctness and security of the Shamir scheme
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Shannon entropy: perfect secret sharing (threshold scheme)
setting: fix integer numbers n and t < n.

@ Dealer samples a secret key Sp and shares Sy,...5,

@ for i =1,...,n the i-th participant gets the share S;

@ correctness: every t participants together can compute Sy
H(So | S;,-..S,)=0

@ security: every < (t — 1) participants together have no information on Sy
H(So | S --- Sj-y) = H(S)

solution (Shamir) : fix a field F (with > n elements)
fix elements xp, x1,...,x, € F

Dealer samples a random polynomial
P(x)=ay+aix+...+a_1x""LoverF

secret key Sp := P(xo) shares
Si = P(x)
Exercise: prove correctness and security of the Shamir scheme

Exercise: prove that in every correct and secure scheme of secret sharing
H(S,) > H(So) for i = 1,.. ., n
et



Shannon entropy: perfect secret sharing (I-scheme)

@ Dealer samples a secret key So and shares Sa, Sg, Sc, Sp for 4 participants
@ correctness: the pairs {Sa, Sg}, {Ss,Sc}. {Sc, Sp} allow to get the secret
ie., H(So | SaSg) =0, H(Sp | SeSc) =0, H(So | ScSp) =0
@ security: other pairs get no information on the secret
ie., H(So | SaSc) = H(So), H(So | SaSp) = H(So), H(So | SSp) = H(So)
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Shannon entropy: perfect secret sharing (I-scheme)
@ Dealer samples a secret key So and shares Sa, Sg, Sc, Sp for 4 participants

@ correctness: the pairs {Sa, Sg}, {Sg,Sc}. {Sc,Sp} allow to get the secret
ie., H(So | SaSg) =0, H(Sp | SeSc) =0, H(So | ScSp) =0

@ security: other pairs get no information on the secret
ie., H(So | SaSc) = H(So), H(So | SaSp) = H(So), H(So | SSp) = H(So)

Exercise: construct a correct and secure scheme of secret sharing such that
max{H(SA), H(SB), H(Sc), H(SD)} S %H(So)
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Shannon entropy: perfect secret sharing (I-scheme)
@ Dealer samples a secret key So and shares Sa, Sg, Sc, Sp for 4 participants
@ correctness: the pairs {Sa, Sg}, {Sg,Sc}. {Sc,Sp} allow to get the secret
ie., H(So | SaSg) =0, H(Sp | SeSc) =0, H(So | ScSp) =0
@ security: other pairs get no information on the secret
ie., H(So | SaSc) = H(So), H(So | SaSp) = H(So), H(So | SSp) = H(So)

Exercise: construct a correct and secure scheme of secret sharing such that
max{H(Sa), H(Sg), H(S¢),H(Sp)} < %H(So)

Exercise: prove that in every correct and secure scheme of secret sharing
max{H(Sx), H(Sg), H(Sc), H(Sp)} > 2H(S)
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Shannon entropy: perfect secret sharing (I'-scheme)

@ Dealer samples a secret key Sy and shares Sa, Sg, Sc, Sp for 4 participants
@ correctness: the pairs {Sa, Sg}, {Sg,Sc}. {Sc,Sp} allow to get the secret
ie., H(So | SaSg) =0, H(Sp | SeSc) =0, H(So | ScSp) =0
@ security: other pairs get no information on the secret
i.e., H(Sp | SaSc) = H(So), H(So | SaSp) = H(So), H(So | SeSp) = H(Sp)

Exercise: construct a correct and secure scheme of secret sharing such that
max{H(Sa), H(Sg), H(S¢),H(Sp)} < %H(So)

Exercise: prove that in every correct and secure scheme of secret sharing
max{H(S54),H(Sg), H(S¢),H(Sp)} > %H(So)

Theorem (Laszlo Csirmaz): one can formulate the conditions of correctness
and security for n participants so that for every secret sharing scheme

Q%XHH(S;) > Q(n/ log n) - H(So)
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Shannon entropy: perfect secret sharing (I'-scheme)
@ Dealer samples a secret key Sy and shares Sa, Sg, Sc, Sp for 4 participants
@ correctness: the pairs {Sa, Sg}, {Sg,Sc}. {Sc,Sp} allow to get the secret
i.e., H(So | SaSg) =0, H(So | SeSc) =0, H(So | ScSp) = 0
@ security: other pairs get no information on the secret
ie., H(So | SaSc) = H(So), H(So | SaSp) = H(So), H(So | SSp) = H(So)

Exercise: construct a correct and secure scheme of secret sharing such that
max{H(Sa), H(Sg), H(S¢),H(Sp)} < %H(So)

Exercise: prove that in every correct and secure scheme of secret sharing
max{H(S54),H(Sg), H(S¢),H(Sp)} > %H(So)

Theorem (Laszlo Csirmaz): one can formulate the conditions of correctness
and security for n participants so that for every secret sharing scheme

Q%XHH(S;) > Q(n/ log n) - H(So)

Much simpler fact: for all conditions of correctness and security there exists a
secret sharing scheme such that H(S;) < 20(") . H(S,) for all i
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