Different Views of Information Part I

Geometry in Cryptography and Communication

Andrei Romashchenko

UiT The Arctic University of Norway, October 2025

Definition: the amount of information in a finite set A is $\chi(S) = \log \operatorname{Card}(S)$.

Definition: the amount of information in a finite set A is $\chi(S) = \log \operatorname{Card}(S)$.

Observation 1: For all S

$$\chi(S^k) = k \cdot \chi(S).$$

Definition: the amount of information in a finite set A is $\chi(S) = \log \operatorname{Card}(S)$.

Observation 1: For all S

$$\chi(S^k) = k \cdot \chi(S).$$

Observation 2: Let A = set of binary strings of length N, with p_0N zeros and p_1N ons $(p_0 + p_1 = 1)$. Then

$$\chi(A) = \log \frac{N!}{(p_0 N)! \cdot (p_1 N)!}$$

Definition: the amount of information in a finite set A is $\chi(S) = \log \operatorname{Card}(S)$.

Observation 1: For all S

$$\chi(S^k) = k \cdot \chi(S).$$

Observation 2: Let A = set of binary strings of length N, with $p_0 N$ zeros and $p_1 N$ ons $(p_0 + p_1 = 1)$. Then

$$\chi(A) = \log \frac{N!}{(p_0 N)! \cdot (p_1 N)!} = \left(p_0 \log \frac{1}{p_0} + p_1 \log \frac{1}{p_1}\right) N + O(\log N)$$

Definition: the amount of information in a finite set A is $\chi(S) = \log \operatorname{Card}(S)$.

Observation 1: For all S

$$\chi(S^k) = k \cdot \chi(S).$$

Observation 2: Let A = set of binary strings of length N, with $p_0 N$ zeros and $p_1 N$ ons $(p_0 + p_1 = 1)$. Then

$$\chi(A) = \log \frac{N!}{(p_0 N)! \cdot (p_1 N)!} = \left(p_0 \log \frac{1}{p_0} + p_1 \log \frac{1}{p_1}\right) N + O(\log N)$$

Observation 3: Let B= set of strings of length N in the alphabet $\{a,b,\ldots,z\}$, with 12.7% letters 'e', 9.1% letters 't', 8.2% letters 'a', 7.5% letters 'o', ... Then

$$\chi(B) \approx 4.14N$$

Definition: the amount of information in a finite set S is $\chi(S) = \log \operatorname{Card}(S)$.

Definition: the amount of information in a finite set S is $\chi(S) = \log \operatorname{Card}(S)$.

Definition: If $S \subset \mathbb{N} \times \mathbb{N}$, then

$$\chi_1(S) = \log \operatorname{Card}(\pi_1 S), \quad \chi_2(S) = \log \operatorname{Card}(\pi_2 S)$$

where $\pi_i S$ denotes the projection of S onto the i-th coordinate.

Definition: the amount of information in a finite set S is $\chi(S) = \log \operatorname{Card}(S)$.

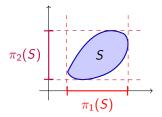
Definition: If $S \subset \mathbb{N} \times \mathbb{N}$, then

$$\chi_1(S) = \log \operatorname{Card}(\pi_1 S), \quad \chi_2(S) = \log \operatorname{Card}(\pi_2 S)$$

where $\pi_i S$ denotes the projection of S onto the i-th coordinate.

Observation 1:
$$\chi(S) \leq \chi_1(S) + \chi_2(S)$$

and
$$\chi(S) = \chi_1(S) + \chi_2(S)$$
 iff $S = (\pi_1 S) \times (\pi_2 S)$



Definition: the amount of information in a finite set S is $\chi(S) = \log \operatorname{Card}(S)$.

Definition: If $S \subset \mathbb{N} \times \mathbb{N}$, then

$$\chi_1(S) = \log \operatorname{Card}(\pi_1 S), \quad \chi_2(S) = \log \operatorname{Card}(\pi_2 S)$$

where $\pi_i S$ denotes the projection of S onto the i-th coordinate.

Observation 1:
$$\chi(S) \leq \chi_1(S) + \chi_2(S)$$

and
$$\chi(S) = \chi_1(S) + \chi_2(S)$$
 iff $S = (\pi_1 S) \times (\pi_2 S)$

Observation 2: if $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then $\chi(S) \leq \chi_1(S) + \chi_2(S) + \chi_3(S)$.

Definition: the amount of information in a finite set S is $\chi(S) = \log \operatorname{Card}(S)$.

Definition: If $S \subset \mathbb{N} \times \mathbb{N}$, then

$$\chi_1(S) = \log \operatorname{Card}(\pi_1 S), \quad \chi_2(S) = \log \operatorname{Card}(\pi_2 S)$$

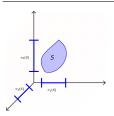
where $\pi_i S$ denotes the projection of S onto the i-th coordinate.

Observation 1: $\chi(S) \leq \chi_1(S) + \chi_2(S)$

and
$$\chi(S) = \chi_1(S) + \chi_2(S)$$
 iff $S = (\pi_1 S) \times (\pi_2 S)$

Observation 2: if $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then $\chi(S) \leq \chi_1(S) + \chi_2(S) + \chi_3(S)$.

This is rephrasing of the claim $Card(S) \leq Card(\pi_1 S) \cdot Card(\pi_2 S) \cdot Card(\pi_3 S)$.



Definition: the amount of information in a finite set S is $\chi(S) = \log \operatorname{Card}(S)$.

Definition: If $S \subset \mathbb{N} \times \mathbb{N}$, then

$$\chi_1(S) = \log \operatorname{Card}(\pi_1 S), \quad \chi_2(S) = \log \operatorname{Card}(\pi_2 S)$$

where $\pi_i S$ denotes the projection of S onto the i-th coordinate.

Observation 1:
$$\chi(S) \leq \chi_1(S) + \chi_2(S)$$

and
$$\chi(S) = \chi_1(S) + \chi_2(S)$$
 iff $S = (\pi_1 S) \times (\pi_2 S)$

Observation 2: if
$$S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$$
, then $\chi(S) \leq \chi_1(S) + \chi_2(S) + \chi_3(S)$.

This is rephrasing of the claim $Card(S) \leq Card(\pi_1 S) \cdot Card(\pi_2 S) \cdot Card(\pi_3 S)$.

Theorem (Loomis–Whitney) If $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then

$$2 \cdot \chi(S) \leq \chi_{12}(S) + \chi_{23}(S) + \chi_{13}(S)$$
.

Definition: the amount of information in a finite set S is $\chi(S) = \log \operatorname{Card}(S)$.

Definition: If $S \subset \mathbb{N} \times \mathbb{N}$, then

$$\chi_1(S) = \log \operatorname{Card}(\pi_1 S), \quad \chi_2(S) = \log \operatorname{Card}(\pi_2 S)$$

where $\pi_i S$ denotes the projection of S onto the i-th coordinate.

Observation 1:
$$\chi(S) \leq \chi_1(S) + \chi_2(S)$$

and
$$\chi(S) = \chi_1(S) + \chi_2(S)$$
 iff $S = (\pi_1 S) \times (\pi_2 S)$

Observation 2: if
$$S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$$
, then $\chi(S) \leq \chi_1(S) + \chi_2(S) + \chi_3(S)$.

This is rephrasing of the claim $\operatorname{Card}(S) \leq \operatorname{Card}(\pi_1 S) \cdot \operatorname{Card}(\pi_2 S) \cdot \operatorname{Card}(\pi_3 S)$.

Theorem (Loomis–Whitney) If $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then

$$2 \cdot \chi(S) \leq \chi_{12}(S) + \chi_{23}(S) + \chi_{13}(S)$$
.

This inequality basically claims that

$$\operatorname{Card}(S)^2 \leq \operatorname{Card}(\pi_{12}S) \cdot \operatorname{Card}(\pi_{13}S) \cdot \operatorname{Card}(\pi_{23}S).$$

Definition: the amount of information in a finite set S is $\chi(S) = \log \operatorname{Card}(S)$.

Definition: If $S \subset \mathbb{N} \times \mathbb{N}$, then

$$\chi_1(S) = \log \operatorname{Card}(\pi_1 S), \quad \chi_2(S) = \log \operatorname{Card}(\pi_2 S)$$

where $\pi_i S$ denotes the projection of S onto the i-th coordinate.

Observation 1:
$$\chi(S) \leq \chi_1(S) + \chi_2(S)$$

and
$$\chi(S) = \chi_1(S) + \chi_2(S)$$
 iff $S = (\pi_1 S) \times (\pi_2 S)$

Observation 2: if
$$S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$$
, then $\chi(S) \leq \chi_1(S) + \chi_2(S) + \chi_3(S)$.

This is rephrasing of the claim $Card(S) \leq Card(\pi_1 S) \cdot Card(\pi_2 S) \cdot Card(\pi_3 S)$.

Theorem (Loomis–Whitney) If $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then

$$2 \cdot \chi(S) \leq \chi_{12}(S) + \chi_{23}(S) + \chi_{13}(S)$$
.

Continuous version:

$$\mathsf{volume}(\mathsf{S})^2 \le \mathsf{area}(\pi_{12}S) \cdot \mathsf{area}(\pi_{13}S) \cdot \mathsf{area}(\pi_{23}S).$$

Question 1: There are 25 identical-looking coins, one of which is counterfeit and lighter than the others. Using a balance scale without additional weights, determine the least number of weighings needed to identify the counterfeit coin.

Question 1: There are 25 identical-looking coins, one of which is counterfeit and lighter than the others. Using a balance scale without additional weights, determine the least number of weighings needed to identify the counterfeit coin.

Simple: a strategy with 3 weighings.

Question 1: There are 25 identical-looking coins, one of which is counterfeit and lighter than the others. Using a balance scale without additional weights, determine the least number of weighings needed to identify the counterfeit coin.

Simple: a strategy with 3 weighings.

Proof of a lower bound: For a strategy with k operations

$$\chi(\text{outcome}) \leq \chi(1\text{st weighing}) + \ldots + \chi(k\text{st weighing}) \leq \underbrace{\log 3 + \ldots + \log 3}_{k}$$

so
$$k \ge (\log 25)/(\log 3)$$

Question 1: There are 25 identical-looking coins, one of which is counterfeit and lighter than the others. Using a balance scale without additional weights, determine the least number of weighings needed to identify the counterfeit coin.

Simple: a strategy with 3 weighings.

Proof of a lower bound: For a strategy with k operations

$$\chi(\text{outcome}) \le \chi(1\text{st weighing}) + \ldots + \chi(k\text{st weighing}) \le \underbrace{\log 3 + \ldots + \log 3}_{k}$$

so $k \geq (\log 25)/(\log 3)$

Question 2: There are 14 identical-looking coins, one of which is counterfeit and differs in weight (either lighter or heavier) from the others. Using a balance scale without additional weights, determine the least number of weighings needed to identify the counterfeit coin.

Question 1: There are 25 identical-looking coins, one of which is counterfeit and lighter than the others. Using a balance scale without additional weights, determine the least number of weighings needed to identify the counterfeit coin.

Simple: a strategy with 3 weighings.

Proof of a lower bound: For a strategy with k operations

$$\chi(\text{outcome}) \le \chi(1\text{st weighing}) + \ldots + \chi(k\text{st weighing}) \le \underbrace{\log 3 + \ldots + \log 3}_{k}$$
 so $k > (\log 25)/(\log 3)$

Question 2: There are 14 identical-looking coins, one of which is counterfeit and differs in weight (either lighter or heavier) from the others. Using a balance scale without additional weights, determine the least number of weighings needed to identify the counterfeit coin.

This is an exercise!

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

Properties:

• $H(X) \ge 0$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

Properties:

• $H(X) \ge 0$, with equality iff

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

Properties:

• $H(X) \ge 0$, with equality iff $p_i = 1$ for some i

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

Properties:

• $\mathrm{H}(X) \geq 0$, with equality iff $p_i = 1$ for some i (immediately form the definition)

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

- H(X) ≥ 0, with equality iff p_i = 1 for some i (immediately form the definition)
- $H(X) \leq \log k$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

- H(X) ≥ 0, with equality iff p_i = 1 for some i (immediately form the definition)
- $H(X) \leq \log k$, with equality iff

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

- H(X) ≥ 0, with equality iff p_i = 1 for some i (immediately form the definition)
- $\mathrm{H}(X) \leq \log k$, with equality iff $p_1 = \cdots = p_k = \frac{1}{k}$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

- H(X) ≥ 0, with equality iff p_i = 1 for some i (immediately form the definition)
- $H(X) \le \log k$, with equality iff $p_1 = \cdots = p_k = \frac{1}{k}$ (proof: concavity of the logarithm + Jensen's inequality).

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

two classical theorems:

• for all uniquely decodable binary code c_1, \ldots, c_k

$$\sum_{i=1}^k p_i \cdot \operatorname{length}(c_i) \geq \operatorname{H}(X)$$

• there exists a uniquely decodable binary code c_1, \ldots, c_k such that

$$\sum\limits_{i=1}^k p_i \cdot \mathsf{length}(c_i) < \mathrm{H}(X) + 1$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

two classical theorems:

• for all uniquely decodable binary code c_1, \ldots, c_k

$$\sum_{i=1}^k p_i \cdot \operatorname{length}(c_i) \geq \operatorname{H}(X)$$

ullet there exists a uniquely decodable binary code c_1,\ldots,c_k such that

$$\sum\limits_{i=1}^{k}p_{i}\cdot \mathsf{length}(c_{i})<\mathrm{H}(X)+1$$

slightly informally: the value of H(X) gives the optimal compression rate

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

cf. the proof in suppl. materials:

$$2\mathrm{H}(X,Y,Z) \leq \mathrm{H}(X,Y) + \mathrm{H}(X,Z) + \mathrm{H}(Y,Z).$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k \rho_i \log \frac{1}{\rho_i}$$

cf. the proof in suppl. materials:

$$2H(X, Y, Z) \le H(X, Y) + H(X, Z) + H(Y, Z).$$

Loomis–Whitney revisited: if $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then

$$\operatorname{Card}(S)^2 \leq \operatorname{Card}(\pi_{12}S) \cdot \operatorname{Card}(\pi_{13}S) \cdot \operatorname{Card}(\pi_{23}S).$$

$$2 \cdot \chi(S) \leq \chi_{12}(S) + \chi_{23}(S) + \chi_{13}(S).$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k \rho_i \log \frac{1}{\rho_i}$$

cf. the proof in suppl. materials:

$$2H(X, Y, Z) \le H(X, Y) + H(X, Z) + H(Y, Z).$$

Loomis–Whitney revisited: if $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then

$$\operatorname{Card}(S)^2 \leq \operatorname{Card}(\pi_{12}S) \cdot \operatorname{Card}(\pi_{13}S) \cdot \operatorname{Card}(\pi_{23}S).$$

$$2 \cdot \chi(S) \leq \chi_{12}(S) + \chi_{23}(S) + \chi_{13}(S).$$

Sketch of the proof: sample (X, Y, Z) uniformly in S

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k \rho_i \log \frac{1}{\rho_i}$$

cf. the proof in suppl. materials:

$$2H(X, Y, Z) \le H(X, Y) + H(X, Z) + H(Y, Z).$$

Loomis–Whitney revisited: if $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then

$$\operatorname{Card}(S)^2 \leq \operatorname{Card}(\pi_{12}S) \cdot \operatorname{Card}(\pi_{13}S) \cdot \operatorname{Card}(\pi_{23}S).$$

$$2 \cdot \chi(S) \leq \chi_{12}(S) + \chi_{23}(S) + \chi_{13}(S).$$

Sketch of the proof: sample (X, Y, Z) uniformly in S

$$2 \cdot \log \operatorname{Card}(S) = 2H(X, Y, Z)$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k \rho_i \log \frac{1}{\rho_i}$$

cf. the proof in suppl. materials:

$$2H(X, Y, Z) \le H(X, Y) + H(X, Z) + H(Y, Z).$$

Loomis–Whitney revisited: if $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then

$$\operatorname{Card}(S)^2 \leq \operatorname{Card}(\pi_{12}S) \cdot \operatorname{Card}(\pi_{13}S) \cdot \operatorname{Card}(\pi_{23}S).$$

$$2 \cdot \chi(S) \leq \chi_{12}(S) + \chi_{23}(S) + \chi_{13}(S).$$

Sketch of the proof: sample (X, Y, Z) uniformly in S

$$\begin{array}{rcl} 2 \cdot \log \operatorname{Card}(S) & = & 2\operatorname{H}(X, Y, Z) \\ & \leq & \operatorname{H}(X, Y) + \operatorname{H}(X, Z) + \operatorname{H}(Y, Z) \end{array}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

cf. the proof in suppl. materials:

$$2H(X, Y, Z) \le H(X, Y) + H(X, Z) + H(Y, Z).$$

Loomis–Whitney revisited: if $S \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, then

$$\operatorname{Card}(S)^2 \leq \operatorname{Card}(\pi_{12}S) \cdot \operatorname{Card}(\pi_{13}S) \cdot \operatorname{Card}(\pi_{23}S).$$

$$2 \cdot \chi(S) \leq \chi_{12}(S) + \chi_{23}(S) + \chi_{13}(S).$$

Sketch of the proof: sample (X, Y, Z) uniformly in S

$$\begin{array}{rcl} 2 \cdot \log \operatorname{Card}(S) & = & 2\operatorname{H}(X,Y,Z) \\ & \leq & \operatorname{H}(X,Y) + \operatorname{H}(X,Z) + \operatorname{H}(Y,Z) \\ & \leq & \log \operatorname{Card}(\pi_{12}(S)) + \log \operatorname{Card}(\pi_{23}(S)) + \log \operatorname{Card}(\pi_{13}(S)) \end{array}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

For jointly distributed X, Y we have:

$$H(X)$$
, $H(Y)$, $H(X, Y)$.

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

For jointly distributed X, Y we have:

$$\bullet \ \mathrm{H}(X,Y) \leq \mathrm{H}(X) + \mathrm{H}(Y)$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log rac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

For jointly distributed X, Y we have:

$$H(X)$$
, $H(Y)$, $H(X, Y)$.

- $H(X, Y) \leq H(X) + H(Y)$
- H(X, Y) = H(X) + H(Y), iff X and Y are independent

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

with the usual convention $0 \cdot \log \frac{1}{0} = 0$

For jointly distributed X, Y we have:

$$H(X)$$
, $H(Y)$, $H(X, Y)$.

Properties:

- $H(X, Y) \leq H(X) + H(Y)$
- H(X, Y) = H(X) + H(Y), iff X and Y are independent

An Exercise!

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: For jointly distributed X, Y, for each fixed value b of Y we have

$$H(X \mid Y = b).$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: For jointly distributed X, Y, for each fixed value b of Y we have

$$H(X \mid Y = b).$$

Conditional Shannon entropy of X given Y is

$$\operatorname{H}(X \mid Y) := \sum_{b} \operatorname{H}(X \mid Y = b) \operatorname{Pr}[Y = b].$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: For jointly distributed X, Y, for each fixed value b of Y we have

$$H(X \mid Y = b).$$

Conditional Shannon entropy of X given Y is

$$H(X \mid Y) := \sum_{b} H(X \mid Y = b) \Pr[Y = b].$$

- $\bullet \ \mathrm{H}(X,Y) = \mathrm{H}(X \mid Y) + \mathrm{H}(Y),$
- $H(X | Y) \ge 0$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: For jointly distributed X, Y, for each fixed value b of Y we have

$$H(X \mid Y = b).$$

Conditional Shannon entropy of X given Y is

$$\mathrm{H}(X\mid Y):=\sum_{b}\mathrm{H}(X\mid Y=b)\;\mathsf{Pr}[Y=b].$$

- $\bullet \ \mathrm{H}(X,Y) = \mathrm{H}(X \mid Y) + \mathrm{H}(Y),$
- $H(X \mid Y) \ge 0$, with $H(X \mid Y) = 0$ iff X = Function(Y)

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: For jointly distributed X, Y, for each fixed value b of Y we have

$$H(X \mid Y = b).$$

Conditional Shannon entropy of X given Y is

$$\mathrm{H}(X\mid Y):=\sum_{b}\mathrm{H}(X\mid Y=b)\;\mathsf{Pr}[Y=b].$$

Properties:

- $\bullet \ \mathrm{H}(X,Y) = \mathrm{H}(X \mid Y) + \mathrm{H}(Y),$
- $H(X \mid Y) \ge 0$, with $H(X \mid Y) = 0$ iff X = Function(Y)

An Exercise !

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1,\ldots,p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: For jointly distributed X, Y, the *information on* Y *contained in* X is

$$I(X:Y) = H(Y) - H(Y \mid X).$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log rac{1}{p_i}$$

Definition: For jointly distributed X, Y, the *information on* Y *contained in* X is

$$I(X:Y) = H(Y) - H(Y \mid X).$$

•
$$I(X : Y) = I(Y : X) = H(X) + H(Y) - H(X, Y),$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: For jointly distributed X, Y, the *information on* Y *contained in* X is

$$I(X:Y) = H(Y) - H(Y \mid X).$$

- I(X : Y) = I(Y : X) = H(X) + H(Y) H(X, Y),
- $I(X : Y) \le H(X)$, and $I(X : Y) \le H(Y)$,

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log rac{1}{p_i}$$

Definition: For jointly distributed X, Y, the *information on* Y *contained in* X is

$$I(X:Y) = H(Y) - H(Y \mid X).$$

- I(X : Y) = I(Y : X) = H(X) + H(Y) H(X, Y),
- $I(X : Y) \le H(X)$, and $I(X : Y) \le H(Y)$,
- $I(X : Y) \ge 0$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log rac{1}{p_i}$$

Definition: For jointly distributed X, Y, the *information on* Y *contained in* X is

$$I(X:Y) = H(Y) - H(Y \mid X).$$

- I(X : Y) = I(Y : X) = H(X) + H(Y) H(X, Y),
- $I(X : Y) \le H(X)$, and $I(X : Y) \le H(Y)$,
- $I(X : Y) \ge 0$, with I(X : Y) = 0 iff $X \perp \!\!\! \perp Y$ (independent),

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k \rho_i \log \frac{1}{\rho_i}$$

Definition: For jointly distributed X, Y, the *information on* Y *contained in* X is

$$I(X:Y) = H(Y) - H(Y \mid X).$$

- I(X : Y) = I(Y : X) = H(X) + H(Y) H(X, Y),
- $I(X : Y) \le H(X)$, and $I(X : Y) \le H(Y)$,
- $I(X : Y) \ge 0$, with I(X : Y) = 0 iff $X \perp \!\!\! \perp Y$ (independent),
- I(X : Y) = H(X) if and only if X = Function(Y),

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k \rho_i \log \frac{1}{\rho_i}$$

Definition: For jointly distributed X, Y, the *information on* Y *contained in* X is

$$I(X : Y) = H(Y) - H(Y \mid X).$$

- I(X : Y) = I(Y : X) = H(X) + H(Y) H(X, Y),
- $I(X : Y) \le H(X)$, and $I(X : Y) \le H(Y)$,
- $I(X : Y) \ge 0$, with I(X : Y) = 0 iff $X \perp \!\!\! \perp Y$ (independent),
- I(X : Y) = H(X) if and only if X = Function(Y),
- I(X : X) = H(X).

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: For jointly distributed X, Y, the *information on* Y *contained in* X is

$$I(X:Y) = H(Y) - H(Y \mid X).$$

Properties:

- I(X : Y) = I(Y : X) = H(X) + H(Y) H(X, Y),
- $I(X : Y) \le H(X)$, and $I(X : Y) \le H(Y)$,
- $I(X : Y) \ge 0$, with I(X : Y) = 0 iff $X \perp \!\!\! \perp Y$ (independent),
- I(X : Y) = H(X) if and only if X = Function(Y),
- I(X : X) = H(X).

An Exercise !

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1,\ldots,p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: conditional mutual information between X and Y given Z

1st definition: $I(X : Y \mid Z) := \sum_{c} I(X : Y \mid Z = c) \Pr[Z = c],$

2nd definition: $I(X : Y \mid Z) := H(Y \mid Z) - H(Y \mid X, Z)$.

3rd definition: $I(X : Y \mid Z) := H(X \mid Z) + H(Y \mid Z) - H(X, Y \mid Z)$.

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$H(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: conditional mutual information between X and Y given Z

1st definition: $I(X : Y \mid Z) := \sum_{c} I(X : Y \mid Z = c) \Pr[Z = c],$

2nd definition: $I(X : Y \mid Z) := H(Y \mid Z) - H(Y \mid X, Z)$.

3rd definition: $I(X : Y \mid Z) := H(X \mid Z) + H(Y \mid Z) - H(X, Y \mid Z)$.

Exercise: these three definitions are equivalent.

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: conditional mutual information between X and Y given Z

1st definition:
$$I(X : Y \mid Z) := \sum_{c} I(X : Y \mid Z = c) \Pr[Z = c],$$

2nd definition:
$$I(X : Y \mid Z) := H(Y \mid Z) - H(Y \mid X, Z)$$
.

3rd definition:
$$I(X : Y \mid Z) := H(X \mid Z) + H(Y \mid Z) - H(X, Y \mid Z)$$
.

Exercise: these three definitions are equivalent.

- $I(X : Y | Z) \ge 0$,
- $I(X : Y \mid Z) = I(Y : X \mid Z)$,
- $I(X : Y \mid Z) = H(X, Z) + H(Y, Z) H(X, Y, Z) H(Z)$.

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k \rho_i \log \frac{1}{\rho_i}$$

Another Definition (triple mutual information):

$$\begin{split} \mathrm{I}(X:Y:Z) &:= & \mathrm{I}(X:Y) - \mathrm{H}(X:Y\mid Z) \\ &:= & \mathrm{I}(XY:Z) - \mathrm{I}(X:Z\mid Y) - \mathrm{I}(Y:Z\mid X) \\ &:= & \mathrm{H}(X) + \mathrm{H}(Y) + \mathrm{H}(Z) - \mathrm{H}(X,Y) - \mathrm{H}(X,Z) - \mathrm{H}(Y,Z) \\ &+ \mathrm{H}(X,Y,Z) \end{split}$$

Definition: (Shannon entropy)

For a random variable X taking k values with probabilities p_1, \ldots, p_k

$$\mathrm{H}(X) := \sum_{i=1}^k p_i \log \frac{1}{p_i}$$

Another Definition (triple mutual information):

$$\begin{split} \mathrm{I}(X:Y:Z) &:= & \mathrm{I}(X:Y) - \mathrm{H}(X:Y\mid Z) \\ &:= & \mathrm{I}(XY:Z) - \mathrm{I}(X:Z\mid Y) - \mathrm{I}(Y:Z\mid X) \\ &:= & \mathrm{H}(X) + \mathrm{H}(Y) + \mathrm{H}(Z) - \mathrm{H}(X,Y) - \mathrm{H}(X,Z) - \mathrm{H}(Y,Z) \\ &+ \mathrm{H}(X,Y,Z) \end{split}$$

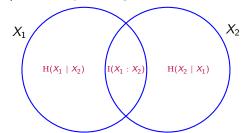
Exercise: these three definitions are equivalent.

* For a random variable X the value H(X) can be any non-negative number

- * For a random variable X the value H(X) can be any non-negative number
- * For jointly (X_1, X_2) we have

$$H(X_1), H(X_2), H(X_1, X_2)$$

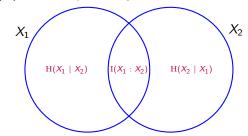
 $H(X_1 \mid X_2), H(X_2 \mid X_1)$
 $I(X_1 : X_2)$



- * For a random variable X the value H(X) can be any non-negative number
- * For jointly (X_1, X_2) we have

$$H(X_1), H(X_2), H(X_1, X_2)$$

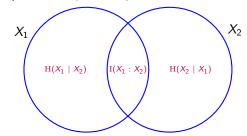
 $H(X_1 \mid X_2), H(X_2 \mid X_1)$
 $I(X_1 : X_2)$



- * For a random variable X the value H(X) can be any non-negative number
- * For jointly (X_1, X_2) we have

$$H(X_1), H(X_2), H(X_1, X_2)$$

 $H(X_1 \mid X_2), H(X_2 \mid X_1)$
 $I(X_1 : X_2)$

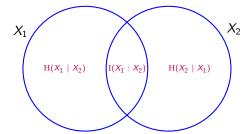


e.g.
$$\mathrm{H}(X_1),\mathrm{H}(X_2),\mathrm{H}(X_1,X_2)$$
 allow to find $\mathrm{H}(X_1\mid X_2),\,\mathrm{H}(X_2\mid X_1),\,\mathrm{I}(X_1:X_2)$

- * For a random variable X the value H(X) can be any non-negative number
- * For jointly (X_1, X_2) we have

$$H(X_1), H(X_2), H(X_1, X_2)$$

 $H(X_1 \mid X_2), H(X_2 \mid X_1)$
 $I(X_1 : X_2)$

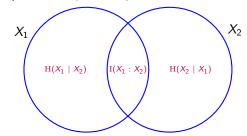


e.g.
$$H(X_1), H(X_2), H(X_1, X_2)$$
 allow to find $H(X_1 \mid X_2), H(X_2 \mid X_1), I(X_1 : X_2)$
 $H(X_1 \mid X_2) = H(X_1, X_2) - H(X_2),$
 $H(X_2 \mid X_1) = H(X_1, X_2) - H(X_1),$
 $I(X_1 : X_2) = H(X_1) + H(X_2) - H(X_1, X_2)$

- * For a random variable X the value H(X) can be any non-negative number
- * For jointly (X_1, X_2) we have

$$H(X_1), H(X_2), H(X_1, X_2)$$

 $H(X_1 \mid X_2), H(X_2 \mid X_1)$
 $I(X_1 : X_2)$

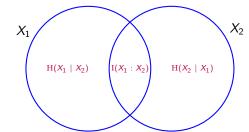


e.g.
$$H(X_1), H(X_2), H(X_1, X_2)$$
 allow to find $H(X_1 \mid X_2), H(X_2 \mid X_1), I(X_1 : X_2)$ or $H(X_1 \mid X_2), H(X_2 \mid X_1)$ and $I(X_1 : X_2)$ allow to find $H(X_1), H(X_2), H(X_1, X_2)$.

- * For a random variable X the value H(X) can be any non-negative number
- * For jointly (X_1, X_2) we have

$$H(X_1), H(X_2), H(X_1, X_2)$$

 $H(X_1 \mid X_2), H(X_2 \mid X_1)$
 $I(X_1 : X_2)$



but only 3 parameters are enough

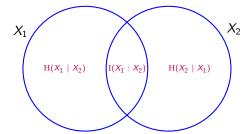
 $H(X_1, X_2) = H(X_1 \mid X_2) + I(X_1 : X_2) + H(X_2 \mid X_1)$

e.g.
$$H(X_1), H(X_2), H(X_1, X_2)$$
 allow to find $H(X_1 \mid X_2), H(X_2 \mid X_1), I(X_1 : X_2)$ or $H(X_1 \mid X_2), H(X_2 \mid X_1)$ and $I(X_1 : X_2)$ allow to find $H(X_1), H(X_2), H(X_1, X_2)$.
$$H(X_1) = H(X_1 \mid X_2) + I(X_1 : X_2), H(X_2) = H(X_2 \mid X_1) + I(X_1 : X_2),$$

- * For a random variable X the value H(X) can be any non-negative number
- * For jointly (X_1, X_2) we have

$$H(X_1), H(X_2), H(X_1, X_2)$$

 $H(X_1 \mid X_2), H(X_2 \mid X_1)$
 $I(X_1 : X_2)$



but only 3 parameters are enough

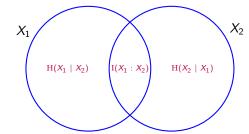
e.g.
$$H(X_1), H(X_2), H(X_1, X_2)$$
 allow to find $H(X_1 \mid X_2), H(X_2 \mid X_1), I(X_1 : X_2)$ or $H(X_1 \mid X_2), H(X_2 \mid X_1)$ and $I(X_1 : X_2)$ allow to find $H(X_1), H(X_2), H(X_1, X_2)$.

constraints:
$$0 \le H(X_1), \ H(X_2) \le H(X_1, X_2) \le H(X_1) + H(X_2)$$

- * For a random variable X the value H(X) can be any non-negative number
- * For jointly (X_1, X_2) we have

$$H(X_1), H(X_2), H(X_1, X_2)$$

 $H(X_1 \mid X_2), H(X_2 \mid X_1)$
 $I(X_1 : X_2)$



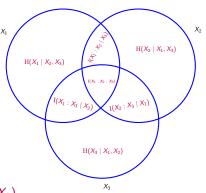
but only 3 parameters are enough

e.g.
$$H(X_1), H(X_2), H(X_1, X_2)$$
 allow to find $H(X_1 \mid X_2), H(X_2 \mid X_1), I(X_1 : X_2)$ or $H(X_1 \mid X_2), H(X_2 \mid X_1)$ and $I(X_1 : X_2)$ allow to find $H(X_1), H(X_2), H(X_1, X_2)$.

constraints:
$$0 \le H(X_1), \ H(X_2) \le H(X_1, X_2) \le H(X_1) + H(X_2)$$
 equivalently: $H(X_1 \mid X_2) \ge 0, \ H(X_2 \mid X_1) \ge 0, \ I(X_1 : X_2) \ge 0$

* For jointly (X_1, X_2, X_3) we have

$$H(X_1), H(X_2), H(X_3)$$
 $H(X_1, X_2), H(X_1, X_3), H(X_2, X_3),$
 $H(X_1, X_2, X_3),$
 $H(X_1 \mid X_2), H(X_2 \mid X_1), \dots,$
 $H(X_1 \mid X_2, X_3), \dots,$
 $H(X_1, X_2 \mid X_3), \dots,$
 $I(X_1 : X_2), I(X_1 : X_3), I(X_2 : X_3)$
 $I(X_1 : X_2X_3), I(X_2 : X_1X_3), I(X_3 : X_1X_3)$
 $I(X_1 : X_2 \mid X_3), I(X_1 : X_3 \mid X_2), I(X_2 : X_3 \mid X_1)$



 $I(X_1 : X_2 : X_3)$

* For jointly (X_1, X_2, X_3) we have

$$H(X_1), H(X_2), H(X_3)$$
 $H(X_1, X_2), H(X_1, X_3), H(X_2, X_3),$
 $H(X_1, X_2, X_3),$
 $H(X_1 \mid X_2), H(X_2 \mid X_1), \dots,$
 $H(X_1 \mid X_2, X_3), \dots,$
 $H(X_1 \mid X_2 \mid X_3), \dots,$
 $I(X_1 : X_2), I(X_1 : X_3), I(X_2 : X_3)$
 $I(X_1 : X_2X_3), I(X_2 : X_1X_3), I(X_3 : X_1X_3)$
 $I(X_1 : X_2 \mid X_3), I(X_1 : X_3 \mid X_2), I(X_2 : X_3 \mid X_1)$
 $I(X_1 : X_2 : X_3)$

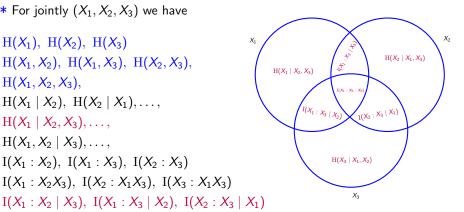
 X_2 $H(X_2 | X_1, X_3)$ $H(X_1 | X_2, X_3)$ $I(X_1 : X_2 : X_3)$ $I(X_1: X_3 \mid X_2)$ $I(X_2 : X_3 | X_1)$ $H(X_3 | X_1, X_2)$ X_3

but only **7 parameters** are enough:

* For jointly (X_1, X_2, X_3) we have

$$H(X_1), H(X_2), H(X_3)$$

 $H(X_1, X_2), H(X_1, X_3), H(X_2, X_3),$
 $H(X_1, X_2, X_3),$
 $H(X_1 \mid X_2), H(X_2 \mid X_1), \dots,$
 $H(X_1 \mid X_2, X_3), \dots,$
 $H(X_1, X_2 \mid X_3), \dots,$
 $I(X_1 : X_2), I(X_1 : X_3), I(X_2 : X_3)$
 $I(X_1 : X_2X_3), I(X_2 : X_1X_3), I(X_3 : X_1X_3)$



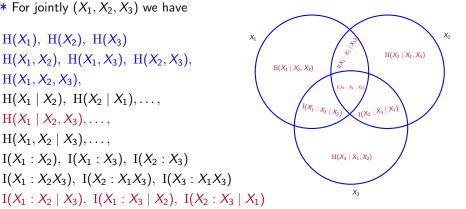
but only **7 parameters** are enough:

e.g. $H(X_1), H(X_2), \ldots$ allow to find all other quantities

 $I(X_1:X_2:X_3)$

* For jointly (X_1, X_2, X_3) we have

$$H(X_1), H(X_2), H(X_3)$$
 $H(X_1, X_2), H(X_1, X_3), H(X_2, X_3),$
 $H(X_1, X_2, X_3),$
 $H(X_1 \mid X_2), H(X_2 \mid X_1), \dots,$
 $H(X_1 \mid X_2, X_3), \dots,$
 $H(X_1 \mid X_2, X_3), \dots,$
 $I(X_1 : X_2), I(X_1 : X_3), I(X_2 : X_3)$
 $I(X_1 : X_2X_3), I(X_2 : X_1X_3), I(X_3 : X_1X_3)$



but only **7 parameters** are enough:

e.g. $H(X_1), H(X_2), \ldots$ allow to find all other quantities

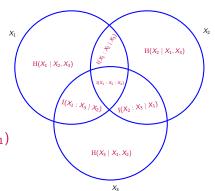
or
$$H(X_1|X_2,X_3),...,I(X_1:X_2|X_3),...,I(X_1:X_2:X_3)$$

allow to find all other quantities

 $I(X_1:X_2:X_3)$

* For jointly (X_1, X_2, X_3) we have

$$\begin{split} &H(X_1),\ H(X_2),\ H(X_3)\\ &H(X_1,X_2),\ H(X_1,X_3),\ H(X_2,X_3),\\ &H(X_1,X_2,X_3),\\ &H(X_1\mid X_2,X_3),\ldots,\\ &I(X_1:X_2\mid X_3),\ I(X_1:X_3\mid X_2),\ I(X_2:X_3\mid X_1)\\ &I(X_1:X_2:X_3) \end{split}$$



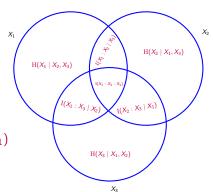
7 parameters define the profile:

e.g.
$$\mathrm{H}(X_1), \mathrm{H}(X_2), \ldots$$
 allow to find all other quantities or $\mathrm{H}(X_1|X_2,X_3), \ldots, \mathrm{I}(X_1:X_2\mid X_3), \ldots, \mathrm{I}(X_1:X_2:X_3)$ allow to find all other quantities

* For jointly (X_1, X_2, X_3) we have

$$H(X_1), H(X_2), H(X_3)$$

 $H(X_1, X_2), H(X_1, X_3), H(X_2, X_3),$
 $H(X_1, X_2, X_3),$
 $H(X_1 \mid X_2, X_3), \dots,$
 $I(X_1 : X_2 \mid X_3), I(X_1 : X_3 \mid X_2), I(X_2 : X_3 \mid X_1)$
 $I(X_1 : X_2 : X_3)$



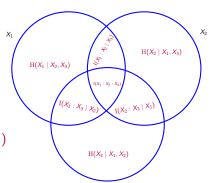
7 parameters define the profile:

e.g. $\mathrm{H}(X_1), \mathrm{H}(X_2), \ldots$ allow to find all other quantities or $\mathrm{H}(X_1|X_2,X_3), \ldots, \mathrm{I}(X_1:X_2|X_3), \ldots, \mathrm{I}(X_1:X_2:X_3)$ allow to find all other quantities

9 constraints: $H(X_1|X_2,X_3) \ge 0,\ldots, \ I(X_1:X_2) \ge 0,\ldots, \ I(X_1:X_2\mid X_3) \ge 0,\ldots$

* For jointly (X_1, X_2, X_3) we have

$$H(X_1), H(X_2), H(X_3)$$
 $H(X_1, X_2), H(X_1, X_3), H(X_2, X_3),$
 $H(X_1, X_2, X_3),$
 $H(X_1 \mid X_2, X_3), \dots,$
 $I(X_1 : X_2 \mid X_3), I(X_1 : X_3 \mid X_2), I(X_2 : X_3 \mid X_1)$
 $I(X_1 : X_2 : X_3)$



 X_3

7 parameters define the profile:

e.g. $\mathrm{H}(X_1), \mathrm{H}(X_2), \ldots$ allow to find all other quantities or $\mathrm{H}(X_1|X_2,X_3), \ldots, \mathrm{I}(X_1:X_2|X_3), \ldots, \mathrm{I}(X_1:X_2:X_3)$ allow to find all other quantities

9 constraints:
$$H(X_1|X_2,X_3) \ge 0,..., I(X_1:X_2) \ge 0,..., I(X_1:X_2\mid X_3) \ge 0,...$$

Exercise: no other inequalities for entropies of (X_1, X_2, X_3)

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

classical constraints:

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

classical constraints:

monotonicity:

$$\mathrm{H}(X_{i_1}\ldots X_{i_m})\leq \mathrm{H}(X_{i_1}\ldots X_{i_m}X_{j_1}\ldots X_{j_s})$$

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2),...$$

 $H(X_1, X_2), H(X_1, X_3),...,$
 $H(X_1, X_2, X_3),...$
...

 $2^n - 1$ parameters that define the profile

classical constraints:

monotonicity:

$$\mathrm{H}(X_{i_1} \ldots X_{i_m}) \leq \mathrm{H}(X_{i_1} \ldots X_{i_m} X_{j_1} \ldots X_{j_s})$$

concavity:

$$\mathrm{H}(X_{i_1} \ldots X_{i_m} X_{j_1} \ldots X_{j_s}) \leq \mathrm{H}(X_{i_1} \ldots X_{i_m}) + \mathrm{H}(X_{j_1} \ldots X_{j_s})$$

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

classical constraints:

monotonicity:

$$\mathrm{H}(X_{i_1} \ldots X_{i_m}) \leq \mathrm{H}(X_{i_1} \ldots X_{i_m} X_{j_1} \ldots X_{j_s})$$

concavity:

$$\mathrm{H}(X_{i_1} \ldots X_{i_m} X_{j_1} \ldots X_{j_s}) \leq \mathrm{H}(X_{i_1} \ldots X_{i_m}) + \mathrm{H}(X_{j_1} \ldots X_{j_s})$$

• submodularity:

$$H(X_{i_1} \dots X_{i_m} X_{j_1} \dots X_{j_s} X_{k_1} \dots X_{k_\ell}) + H(X_{k_1} \dots X_{k_\ell}) \le$$

 $\leq H(X_{i_1} \dots X_{i_m} X_{k_1} \dots X_{k_\ell}) + H(X_{i_1} \dots X_{i_s} X_{k_1} \dots X_{k_\ell})$

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$

 $2^n - 1$ parameters that define the profile

classical constraints:

for
$$\mathcal{M} = \{i_1, \dots, i_m\}$$
 we denote $\mathrm{H}(X_\mathcal{I}) = \mathrm{H}(X_{i_1} \dots X_{i_m})$

monotonicity:

$$\mathrm{H}(X_{\mathcal{I}}) \leq \mathrm{H}(X_{\mathcal{I} \cup \mathcal{J}})$$
 or equivalently $\mathrm{H}(X_{\mathcal{J}} \mid X_{\mathcal{I}}) \geq 0$

concavity:

$$\mathrm{H}(X_{\mathcal{I}\cup\mathcal{J}}) \leq \mathrm{H}(X_{\mathcal{I}}) + \mathrm{H}(X_{\mathcal{J}})$$
 or equivalently $\mathrm{I}(X_{\mathcal{I}}:X_{\mathcal{J}}) \geq 0$

submodularity:

$$H(X_{\mathcal{I} \cup \mathcal{J} \cup \mathcal{K}}) + H(X_{\mathcal{K}}) \le H(X_{\mathcal{I} \cup \mathcal{K}}) + H(X_{\mathcal{J} \cup \mathcal{K}})$$
 or equivalently $I(X_{\mathcal{I}} : X_{\mathcal{I}} \mid X_{\mathcal{K}}) \ge 0.$

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

Shannon, the 1940s:

- $H(X_{\mathcal{I}} \mid X_{\mathcal{I}}) \geq 0$
- $I(X_{\mathcal{I}}:X_{\mathcal{J}})\geq 0$
- $I(X_{\mathcal{I}}: X_{\mathcal{J}} \mid X_{\mathcal{K}}) \geq 0$

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

Shannon, the 1940s:

- $H(X_{T} | X_{T}) \geq 0$
- $I(X_{\mathcal{I}}:X_{\mathcal{J}})\geq 0$
- $I(X_{\mathcal{I}}: X_{\mathcal{J}} \mid X_{\mathcal{K}}) \geq 0$

Question: Are there any other inequalities?

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

Shannon, the 1940s:

- $H(X_{T} | X_{T}) \ge 0$
- $I(X_{\mathcal{I}}:X_{\mathcal{J}})\geq 0$
- $I(X_{\mathcal{I}}: X_{\mathcal{J}} \mid X_{\mathcal{K}}) \geq 0$

Question: Are there any other inequalities?

Zhang–Yeung 1998: Yes, another inequality for n = 4 random variables!

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), ...$$

 $H(X_1, X_2), H(X_1, X_3), ...,$
 $H(X_1, X_2, X_3), ...$
...

 $2^n - 1$ parameters that define the profile

Shannon, the 1940s:

- $H(X_T \mid X_T) \ge 0$
- $I(X_{\mathcal{I}}:X_{\mathcal{J}})\geq 0$
- $I(X_{\mathcal{I}}: X_{\mathcal{J}} \mid X_{\mathcal{K}}) \geq 0$

Question: Are there any other inequalities?

Zhang–Yeung 1998: Yes, another inequality for n = 4 random variables!

Matus 2007: infinitely many inequalities with $n \ge 4$ random variables!!

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), \dots H(X_1, X_2), H(X_1, X_3), \dots, H(X_1, X_2, X_3), \dots$$

* For jointly distributed (X_1, \ldots, X_n) we have

$$\mathrm{H}(X_1), \ \mathrm{H}(X_2), \ldots \ \mathrm{H}(X_1, X_2), \ \mathrm{H}(X_1, X_3), \ldots, \ \mathrm{H}(X_1, X_2, X_3), \ldots \ldots$$

this vector of $2^n - 1$ reals \Rightarrow an entropic profile

* For jointly distributed (X_1, \ldots, X_n) we have

$$\mathrm{H}(X_1), \ \mathrm{H}(X_2), \ldots \ \mathrm{H}(X_1, X_2), \ \mathrm{H}(X_1, X_3), \ldots, \ \mathrm{H}(X_1, X_2, X_3), \ldots \ldots$$

this vector of $2^n - 1$ reals \Rightarrow an entropic profile

Notation: $P_n := \text{ entropic profiles for all } (X_1, \dots, X_n)$

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), \ldots H(X_1, X_2), H(X_1, X_3), \ldots, H(X_1, X_2, X_3), \ldots$$

this vector of $2^n - 1$ reals \Rightarrow an entropic profile

Notation: $P_n :=$ entropic profiles for all (X_1, \ldots, X_n)

Theorem. $\bar{\mathbf{P}}_n$ (topological closure) is a *convex cone*.

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), \dots H(X_1, X_2), H(X_1, X_3), \dots, H(X_1, X_2, X_3), \dots$$

this vector of $2^n - 1$ reals \Rightarrow an entropic profile

Notation: $P_n :=$ entropic profiles for all (X_1, \ldots, X_n)

Theorem. $\bar{\mathbf{P}}_n$ (topological closure) is a *convex cone*.

Exercise: prove it.

* For jointly distributed (X_1, \ldots, X_n) we have

$$H(X_1), H(X_2), \ldots H(X_1, X_2), H(X_1, X_3), \ldots, H(X_1, X_2, X_3), \ldots$$

this vector of $2^n - 1$ reals \Rightarrow an entropic profile

Notation: $P_n := \text{ entropic profiles for all } (X_1, \dots, X_n)$

Theorem. $\bar{\mathbf{P}}_n$ (topological closure) is a *convex cone*.

Exercise: prove it.

Fact:

- the case $n \leq 3$ is simple : $\bar{\mathbf{P}}_1$, $\bar{\mathbf{P}}_2$, $\bar{\mathbf{P}}_3$ are defined by Shannon's inequalities $\mathrm{H}(X_{\mathcal{T}} \mid X_{\mathcal{T}}) \geq 0$, $\mathrm{I}(X_{\mathcal{T}} : X_{\mathcal{T}}) \geq 0$, $\mathrm{I}(X_{\mathcal{T}} : X_{\mathcal{T}} \mid X_{\mathcal{K}}) \geq 0$
- the case $n \ge 4$ is hard : $\bar{\mathbf{P}}_n$ is not polyhedral (and not filly understood)

setting:

• Sender and Receiver sample a common secret key

setting:

- Sender and Receiver sample a common secret key
- Sender wants to send a random message

setting:

- Sender and Receiver sample a common secret key
- Sender wants to send a random message
- Sender transmits ciphertext = Enc(message, key)

setting:

- Sender and Receiver sample a common secret key
- Sender wants to send a random message
- Sender transmits ciphertext = Enc(message, key)
- Receivers computes message = Dec(ciphertext, key)

setting:

- Sender and Receiver sample a common secret key
- Sender wants to send a random message
- Sender transmits **ciphertext** = $\operatorname{Enc}(\mathbf{message}, \mathbf{key})$
- Receivers computes message = Dec(ciphertext, key)

requirements:

- ciphertext is a function of (message, key)
- message is a function of (ciphertext, key)
- message and ciphertext are independent

- Sender and Receiver sample a common secret key
- Sender wants to send a random message
- Sender transmits ciphertext = Enc(message, key)
- Receivers computes message = Dec(ciphertext, key)

requirements:

- ciphertext is a function of (message, key)
- message is a function of (ciphertext, key)
- message and ciphertext are independent

solution: Vernam's scheme / one-time pad, where **message**, **key**, **ciphertext** $\in \{0,1\}^n$

- ciphertext = bitwise XOR of message and key
- key = bitwise XOR of message and ciphertext

- Sender and Receiver sample a common secret key
- Sender wants to send a random message
- Sender transmits ciphertext = Enc(message, key)
- Receivers computes message = Dec(ciphertext, key)

requirements:

- ciphertext is a function of (message, key)
- message is a function of (ciphertext, key)
- message and ciphertext are independent

Theorem (Shannon): $H(key) \ge H(message)$

setting: fix integer numbers n and $t \le n$.

- **Dealer** samples a secret key S_0 and shares $S_1, \ldots S_n$
- for i = 1, ..., n the *i*-th **participant** gets the share S_i
- correctness: every t participants together can compute S_0 $H(S_0 \mid S_i, \dots S_i) = 0$
- security: every \leq (t-1) participants together have no information on S_0 $\mathrm{H}(S_0 \mid S_{j_1} \dots S_{j_{t-1}}) = \mathrm{H}(S_0)$

setting: fix integer numbers n and $t \le n$.

- **Dealer** samples a secret key S_0 and shares $S_1, \ldots S_n$
- for i = 1, ..., n the *i*-th **participant** gets the share S_i
- correctness: every t participants together can compute S_0 $\mathbb{H}(S_0 \mid S_{i_1} \dots S_{i_r}) = 0$
- security: every \leq (t-1) participants together have no information on S_0 $\mathrm{H}(S_0 \mid S_{j_1} \dots S_{j_{t-1}}) = \mathrm{H}(S_0)$

solution (Shamir) : fix a field \mathbb{F} (with > n elements)

setting: fix integer numbers n and $t \le n$.

- **Dealer** samples a secret key S_0 and shares $S_1, \ldots S_n$
- for i = 1, ..., n the *i*-th **participant** gets the share S_i
- correctness: every t participants together can compute S_0 $\mathbb{H}(S_0 \mid S_{i_1} \dots S_{i_r}) = 0$
- security: every \leq (t-1) participants together have no information on S_0 $H(S_0 \mid S_{i_1} \dots S_{i_{t-1}}) = H(S_0)$

solution (Shamir) : fix a field \mathbb{F} (with > n elements) fix elements $x_0, x_1, \dots, x_n \in \mathbb{F}$

setting: fix integer numbers n and $t \le n$.

- **Dealer** samples a secret key S_0 and shares $S_1, \ldots S_n$
- for i = 1, ..., n the *i*-th **participant** gets the share S_i
- correctness: every t participants together can compute S_0 $H(S_0 | S_i, ..., S_i) = 0$
- security: every $\leq (t-1)$ participants together have no information on S_0 $H(S_0 \mid S_{i_1} \dots S_{i_{t-1}}) = H(S_0)$
- **solution (Shamir) :** fix a field \mathbb{F} (with > n elements) fix elements $x_0, x_1, \ldots, x_n \in \mathbb{F}$
- **Dealer** samples a random polynomial

$$P(x) = a_0 + a_1 x + \ldots + a_{t-1} x^{t-1}$$
 over \mathbb{F}

setting: fix integer numbers n and $t \le n$.

- **Dealer** samples a secret key S_0 and shares $S_1, \ldots S_n$
- for i = 1, ..., n the *i*-th **participant** gets the share S_i
- correctness: every t participants together can compute S_0 $\mathbb{H}(S_0 \mid S_{i_1} \dots S_{i_r}) = 0$
- security: every \leq (t-1) participants together have no information on S_0 $H(S_0 \mid S_{i_1} \dots S_{i_{t-1}}) = H(S_0)$
- **solution (Shamir) :** fix a field \mathbb{F} (with > n elements) fix elements $x_0, x_1, \ldots, x_n \in \mathbb{F}$
- Dealer samples a random polynomial

$$P(x) = a_0 + a_1 x + ... + a_{t-1} x^{t-1}$$
 over \mathbb{F}

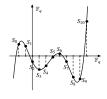
secret key
$$S_0 := P(x_0)$$

setting: fix integer numbers n and $t \le n$.

- **Dealer** samples a secret key S_0 and shares $S_1, \ldots S_n$
- for i = 1, ..., n the *i*-th **participant** gets the share S_i
- correctness: every t participants together can compute S_0 $\mathbb{H}(S_0 \mid S_{i_1} \dots S_{i_r}) = 0$
- security: every \leq (t-1) participants together have no information on S_0 $H(S_0 \mid S_{j_1} \dots S_{j_{t-1}}) = H(S_0)$

solution (Shamir) : fix a field
$$\mathbb{F}$$
 (with $> n$ elements) fix elements $x_0, x_1, \dots, x_n \in \mathbb{F}$

Dealer samples a random polynomial $P(x) = a_0 + a_1x + \ldots + a_{t-1}x^{t-1}$ over \mathbb{F} secret key $S_0 := P(x_0)$ shares $S_i = P(x_i)$

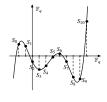


setting: fix integer numbers n and $t \le n$.

- Dealer samples a secret key S_0 and shares $S_1, \ldots S_n$
- for i = 1, ..., n the *i*-th **participant** gets the share S_i
- correctness: every t participants together can compute S_0 $\mathbb{H}(S_0 \mid S_{i_1} \dots S_{i_r}) = 0$
- security: every \leq (t-1) participants together have no information on S_0 $\mathbb{H}(S_0 \mid S_{i_1} \dots S_{i_{t-1}}) = \mathbb{H}(S_0)$

solution (Shamir) : fix a field
$$\mathbb{F}$$
 (with $> n$ elements) fix elements $x_0, x_1, \ldots, x_n \in \mathbb{F}$

Dealer samples a random polynomial $P(x) = a_0 + a_1x + \ldots + a_{t-1}x^{t-1}$ over \mathbb{F} secret key $S_0 := P(x_0)$ shares $S_i = P(x_i)$



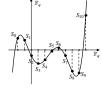
Exercise: prove correctness and security of the Shamir scheme

setting: fix integer numbers n and $t \le n$.

- **Dealer** samples a secret key S_0 and shares $S_1, \ldots S_n$
- for i = 1, ..., n the *i*-th **participant** gets the share S_i
- correctness: every t participants together can compute S_0 $H(S_0 \mid S_{i_1} \dots S_{i_t}) = 0$
- security: every \leq (t-1) participants together have no information on S_0 $H(S_0 \mid S_{j_1} \dots S_{j_{t-1}}) = H(S_0)$

solution (Shamir) : fix a field
$$\mathbb{F}$$
 (with $> n$ elements) fix elements $x_0, x_1, \dots, x_n \in \mathbb{F}$

Dealer samples a random polynomial $P(x) = a_0 + a_1x + \ldots + a_{t-1}x^{t-1}$ over \mathbb{F} secret key $S_0 := P(x_0)$ shares



$$S_i = P(x_i)$$

Exercise: prove correctness and security of the Shamir scheme

Exercise: prove that in *every* correct and secure scheme of secret sharing

$$\mathrm{H}(S_i) \geq \mathrm{H}(S_0)$$
 for $i = 1, \ldots, n$

Shannon entropy: perfect secret sharing (□-scheme)

- Dealer samples a secret key S_0 and shares S_A , S_B , S_C , S_D for 4 participants
- correctness: the pairs $\{S_A, S_B\}$, $\{S_B, S_C\}$, $\{S_C, S_D\}$ allow to get the secret i.e., $H(S_0 \mid S_A S_B) = 0$, $H(S_0 \mid S_B S_C) = 0$, $H(S_0 \mid S_C S_D) = 0$
- security: other pairs get no information on the secret i.e., $H(S_0 \mid S_A S_C) = H(S_0)$, $H(S_0 \mid S_A S_D) = H(S_0)$, $H(S_0 \mid S_B S_D) = H(S_0)$

Shannon entropy: perfect secret sharing (Π -scheme)

- Dealer samples a secret key S_0 and shares S_A , S_B , S_C , S_D for 4 participants
- correctness: the pairs $\{S_A, S_B\}$, $\{S_B, S_C\}$, $\{S_C, S_D\}$ allow to get the secret i.e., $H(S_0 \mid S_A S_B) = 0$, $H(S_0 \mid S_B S_C) = 0$, $H(S_0 \mid S_C S_D) = 0$
- security: other pairs get no information on the secret i.e., $H(S_0 \mid S_A S_C) = H(S_0)$, $H(S_0 \mid S_A S_D) = H(S_0)$, $H(S_0 \mid S_B S_D) = H(S_0)$

Exercise: construct a correct and secure scheme of secret sharing such that $\max\{H(S_A), H(S_B), H(S_C), H(S_D)\} \leq \frac{3}{2}H(S_0)$

Shannon entropy: perfect secret sharing (Π -scheme)

- Dealer samples a secret key S_0 and shares S_A , S_B , S_C , S_D for 4 participants
- correctness: the pairs $\{S_A, S_B\}$, $\{S_B, S_C\}$, $\{S_C, S_D\}$ allow to get the secret i.e., $\mathrm{H}(S_0 \mid S_A S_B) = 0$, $\mathrm{H}(S_0 \mid S_B S_C) = 0$, $\mathrm{H}(S_0 \mid S_C S_D) = 0$
- security: other pairs get no information on the secret i.e., $H(S_0 \mid S_A S_C) = H(S_0)$, $H(S_0 \mid S_A S_D) = H(S_0)$, $H(S_0 \mid S_B S_D) = H(S_0)$

Exercise: construct a correct and secure scheme of secret sharing such that $\max\{H(S_A), H(S_B), H(S_C), H(S_D)\} \leq \frac{3}{2}H(S_0)$

Exercise: prove that in *every* correct and secure scheme of secret sharing $\max\{H(S_A), H(S_B), H(S_C), H(S_D)\} \ge \frac{3}{2}H(S_0)$

Shannon entropy: perfect secret sharing (Π -scheme)

- Dealer samples a secret key S_0 and shares S_A , S_B , S_C , S_D for 4 participants
- correctness: the pairs $\{S_A, S_B\}$, $\{S_B, S_C\}$, $\{S_C, S_D\}$ allow to get the secret i.e., $H(S_0 \mid S_A S_B) = 0$, $H(S_0 \mid S_B S_C) = 0$, $H(S_0 \mid S_C S_D) = 0$
- security: other pairs get no information on the secret i.e., $H(S_0 \mid S_A S_C) = H(S_0)$, $H(S_0 \mid S_A S_D) = H(S_0)$, $H(S_0 \mid S_B S_D) = H(S_0)$

Exercise: construct a correct and secure scheme of secret sharing such that $\max\{H(S_A), H(S_B), H(S_C), H(S_D)\} \leq \frac{3}{2}H(S_0)$

Exercise: prove that in *every* correct and secure scheme of secret sharing $\max\{H(S_A), H(S_B), H(S_C), H(S_D)\} \ge \frac{3}{2}H(S_0)$

Theorem (Laszlo Csirmaz): one can formulate the conditions of correctness and security for *n* participants so that for every secret sharing scheme

$$\max_{1 \le i \le n} \mathrm{H}(S_i) \ge \Omega(n/\log n) \cdot \mathrm{H}(S_0)$$

Shannon entropy: perfect secret sharing (□-scheme)

- Dealer samples a secret key S_0 and shares S_A , S_B , S_C , S_D for 4 participants
- correctness: the pairs $\{S_A, S_B\}$, $\{S_B, S_C\}$, $\{S_C, S_D\}$ allow to get the secret i.e., $H(S_0 \mid S_A S_B) = 0$, $H(S_0 \mid S_B S_C) = 0$, $H(S_0 \mid S_C S_D) = 0$
- security: other pairs get no information on the secret i.e., $H(S_0 \mid S_A S_C) = H(S_0)$, $H(S_0 \mid S_A S_D) = H(S_0)$, $H(S_0 \mid S_B S_D) = H(S_0)$

Exercise: construct a correct and secure scheme of secret sharing such that $\max\{H(S_A), H(S_B), H(S_C), H(S_D)\} \leq \frac{3}{2}H(S_0)$

Exercise: prove that in *every* correct and secure scheme of secret sharing $\max\{H(S_A), H(S_B), H(S_C), H(S_D)\} \ge \frac{3}{2}H(S_0)$

Theorem (Laszlo Csirmaz): one can formulate the conditions of correctness and security for *n* participants so that for every secret sharing scheme

$$\max_{1 \le i \le n} \mathrm{H}(S_i) \ge \Omega(n/\log n) \cdot \mathrm{H}(S_0)$$

Much simpler fact: for all conditions of correctness and security there exists a secret sharing scheme such that $H(S_i) < 2^{O(n)} \cdot H(S_0)$ for all i