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measure of information: Hartley’s approach

Definition: the amount of information in a finite set A is χ(S) = logCard(S).

Observation 1: For all S
χ(Sk) = k · χ(S).

Observation 2: Let A = set of binary strings of length N,
with p0N zeros and p1N ons (p0 + p1 = 1). Then

χ(A) = log
N!

(p0N)! · (p1N)!
=

(
p0 log

1

p0
+ p1 log

1

p1

)
N + O(logN)

Observation 3: Let B = set of strings of length N in the alphabet {a, b, . . . , z},
with 12.7% letters ‘e’, 9.1% letters ‘t’, 8.2% letters ‘a’, 7.5% letters ‘o’, . . . Then

χ(B) ≈ 4.14N

A.R. Different Views of Information 2 / 21



measure of information: Hartley’s approach

Definition: the amount of information in a finite set A is χ(S) = logCard(S).

Observation 1: For all S
χ(Sk) = k · χ(S).

Observation 2: Let A = set of binary strings of length N,
with p0N zeros and p1N ons (p0 + p1 = 1). Then

χ(A) = log
N!

(p0N)! · (p1N)!
=

(
p0 log

1

p0
+ p1 log

1

p1

)
N + O(logN)

Observation 3: Let B = set of strings of length N in the alphabet {a, b, . . . , z},
with 12.7% letters ‘e’, 9.1% letters ‘t’, 8.2% letters ‘a’, 7.5% letters ‘o’, . . . Then

χ(B) ≈ 4.14N

A.R. Different Views of Information 2 / 21



measure of information: Hartley’s approach

Definition: the amount of information in a finite set A is χ(S) = logCard(S).

Observation 1: For all S
χ(Sk) = k · χ(S).

Observation 2: Let A = set of binary strings of length N,
with p0N zeros and p1N ons (p0 + p1 = 1). Then

χ(A) = log
N!

(p0N)! · (p1N)!

=

(
p0 log

1

p0
+ p1 log

1

p1

)
N + O(logN)

Observation 3: Let B = set of strings of length N in the alphabet {a, b, . . . , z},
with 12.7% letters ‘e’, 9.1% letters ‘t’, 8.2% letters ‘a’, 7.5% letters ‘o’, . . . Then

χ(B) ≈ 4.14N

A.R. Different Views of Information 2 / 21



measure of information: Hartley’s approach

Definition: the amount of information in a finite set A is χ(S) = logCard(S).

Observation 1: For all S
χ(Sk) = k · χ(S).

Observation 2: Let A = set of binary strings of length N,
with p0N zeros and p1N ons (p0 + p1 = 1). Then

χ(A) = log
N!

(p0N)! · (p1N)!
=

(
p0 log

1

p0
+ p1 log

1

p1

)
N + O(logN)

Observation 3: Let B = set of strings of length N in the alphabet {a, b, . . . , z},
with 12.7% letters ‘e’, 9.1% letters ‘t’, 8.2% letters ‘a’, 7.5% letters ‘o’, . . . Then

χ(B) ≈ 4.14N

A.R. Different Views of Information 2 / 21



measure of information: Hartley’s approach

Definition: the amount of information in a finite set A is χ(S) = logCard(S).

Observation 1: For all S
χ(Sk) = k · χ(S).

Observation 2: Let A = set of binary strings of length N,
with p0N zeros and p1N ons (p0 + p1 = 1). Then

χ(A) = log
N!

(p0N)! · (p1N)!
=

(
p0 log

1

p0
+ p1 log

1

p1

)
N + O(logN)

Observation 3: Let B = set of strings of length N in the alphabet {a, b, . . . , z},
with 12.7% letters ‘e’, 9.1% letters ‘t’, 8.2% letters ‘a’, 7.5% letters ‘o’, . . . Then

χ(B) ≈ 4.14N

A.R. Different Views of Information 2 / 21



measure of information: Hartley’s approach
Definition: the amount of information in a finite set S is χ(S) = logCard(S).

Definition: If S ⊂ N× N, then

χ1(S) = logCard(π1S), χ2(S) = logCard(π2S)

where πiS denotes the projection of S onto the i-th coordinate.

Observation 1: χ(S) ≤ χ1(S) + χ2(S)

and χ(S) = χ1(S) + χ2(S) iff S = (π1S)× (π2S)

Observation 2: if S ⊂ N× N× N, then χ(S) ≤ χ1(S) + χ2(S) + χ3(S).

This is rephrasing of the claim Card(S) ≤ Card(π1S) · Card(π2S) · Card(π3S).

Theorem (Loomis–Whitney) If S ⊂ N× N× N, then

2 · χ(S) ≤ χ12(S) + χ23(S) + χ13(S).

S
Continuous version:

volume(S)2 ≤ area(π12S) · area(π13S) · area(π23S).
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Hartley’s information: toy applications

Question 1: There are 25 identical-looking coins, one of which is counterfeit and
lighter than the others. Using a balance scale without additional weights,
determine the least number of weighings needed to identify the counterfeit coin.

Simple: a strategy with 3 weighings.

Proof of a lower bound: For a strategy with k operations

χ(outcome) ≤ χ(1st weighing) + . . .+ χ(kst weighing) ≤ log 3 + . . .+ log 3︸ ︷︷ ︸
k

so k ≥ (log 25)/(log 3)

Question 2: There are 14 identical-looking coins, one of which is counterfeit and
differs in weight (either lighter or heavier) from the others. Using a balance scale
without additional weights, determine the least number of weighings needed to
identify the counterfeit coin.

This is an exercise!
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

with the usual convention 0 · log 1
0 = 0

Properties:

H(X ) ≥ 0, with equality iff pi = 1 for some i

(immediately form the definition)

H(X ) ≤ log k, with equality iff p1 = · · · = pk = 1
k

(proof: concavity of the logarithm + Jensen’s inequality).
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

with the usual convention 0 · log 1
0 = 0

two classical theorems:

for all uniquely decodable binary code c1, . . . , ck

k∑
i=1

pi · length(ci ) ≥ H(X )

there exists a uniquely decodable binary code c1, . . . , ck such that

k∑
i=1

pi · length(ci ) < H(X ) + 1

slightly informally: the value of H(X ) gives the optimal compression rate
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measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

cf. the proof in suppl. materials:
2H(X ,Y ,Z ) ≤ H(X ,Y ) +H(X ,Z ) +H(Y ,Z ).

Loomis–Whitney revisited: if S ⊂ N× N× N, then

Card(S)2 ≤ Card(π12S) · Card(π13S) · Card(π23S).

2 · χ(S) ≤ χ12(S) + χ23(S) + χ13(S).

Sketch of the proof: sample (X ,Y ,Z ) uniformly in S

2 · logCard(S) = 2H(X ,Y ,Z )
≤ H(X ,Y ) +H(X ,Z ) +H(Y ,Z )
≤ logCard(π12(S)) + logCard(π23(S)) + logCard(π13(S))
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measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

with the usual convention 0 · log 1
0 = 0

For jointly distributed X ,Y we have:

H(X ), H(Y ), H(X ,Y ).

Properties:

H(X ,Y ) ≤ H(X ) +H(Y )

H(X ,Y ) = H(X ) +H(Y ), iff X and Y are independent

An Exercise !
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H(X | Y ) :=
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b
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I(X : X ) = H(X ).

An Exercise !

A.R. Different Views of Information 10 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: For jointly distributed X ,Y , the information on Y contained in X is

I(X : Y ) = H(Y )−H(Y | X ).

Properties:

I(X : Y ) = I(Y : X ) = H(X ) +H(Y )−H(X ,Y ),

I(X : Y ) ≤ H(X ), and I(X : Y ) ≤ H(Y ),

I(X : Y ) ≥ 0, with I(X : Y ) = 0 iff X ⊥⊥ Y (independent),

I(X : Y ) = H(X ) if and only if X = Function(Y ),

I(X : X ) = H(X ).

An Exercise !

A.R. Different Views of Information 10 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: For jointly distributed X ,Y , the information on Y contained in X is

I(X : Y ) = H(Y )−H(Y | X ).

Properties:

I(X : Y ) = I(Y : X ) = H(X ) +H(Y )−H(X ,Y ),

I(X : Y ) ≤ H(X ), and I(X : Y ) ≤ H(Y ),

I(X : Y ) ≥ 0, with I(X : Y ) = 0 iff X ⊥⊥ Y (independent),

I(X : Y ) = H(X ) if and only if X = Function(Y ),

I(X : X ) = H(X ).

An Exercise !

A.R. Different Views of Information 10 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: For jointly distributed X ,Y , the information on Y contained in X is

I(X : Y ) = H(Y )−H(Y | X ).

Properties:

I(X : Y ) = I(Y : X ) = H(X ) +H(Y )−H(X ,Y ),

I(X : Y ) ≤ H(X ), and I(X : Y ) ≤ H(Y ),

I(X : Y ) ≥ 0, with I(X : Y ) = 0 iff X ⊥⊥ Y (independent),

I(X : Y ) = H(X ) if and only if X = Function(Y ),

I(X : X ) = H(X ).

An Exercise !

A.R. Different Views of Information 10 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: For jointly distributed X ,Y , the information on Y contained in X is

I(X : Y ) = H(Y )−H(Y | X ).

Properties:

I(X : Y ) = I(Y : X ) = H(X ) +H(Y )−H(X ,Y ),

I(X : Y ) ≤ H(X ), and I(X : Y ) ≤ H(Y ),

I(X : Y ) ≥ 0

, with I(X : Y ) = 0 iff X ⊥⊥ Y (independent),

I(X : Y ) = H(X ) if and only if X = Function(Y ),

I(X : X ) = H(X ).

An Exercise !

A.R. Different Views of Information 10 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: For jointly distributed X ,Y , the information on Y contained in X is

I(X : Y ) = H(Y )−H(Y | X ).

Properties:

I(X : Y ) = I(Y : X ) = H(X ) +H(Y )−H(X ,Y ),

I(X : Y ) ≤ H(X ), and I(X : Y ) ≤ H(Y ),

I(X : Y ) ≥ 0, with I(X : Y ) = 0 iff X ⊥⊥ Y (independent),

I(X : Y ) = H(X ) if and only if X = Function(Y ),

I(X : X ) = H(X ).

An Exercise !

A.R. Different Views of Information 10 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: For jointly distributed X ,Y , the information on Y contained in X is

I(X : Y ) = H(Y )−H(Y | X ).

Properties:

I(X : Y ) = I(Y : X ) = H(X ) +H(Y )−H(X ,Y ),

I(X : Y ) ≤ H(X ), and I(X : Y ) ≤ H(Y ),

I(X : Y ) ≥ 0, with I(X : Y ) = 0 iff X ⊥⊥ Y (independent),

I(X : Y ) = H(X ) if and only if X = Function(Y ),

I(X : X ) = H(X ).

An Exercise !

A.R. Different Views of Information 10 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: For jointly distributed X ,Y , the information on Y contained in X is

I(X : Y ) = H(Y )−H(Y | X ).

Properties:

I(X : Y ) = I(Y : X ) = H(X ) +H(Y )−H(X ,Y ),

I(X : Y ) ≤ H(X ), and I(X : Y ) ≤ H(Y ),

I(X : Y ) ≥ 0, with I(X : Y ) = 0 iff X ⊥⊥ Y (independent),

I(X : Y ) = H(X ) if and only if X = Function(Y ),

I(X : X ) = H(X ).

An Exercise !

A.R. Different Views of Information 10 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: For jointly distributed X ,Y , the information on Y contained in X is

I(X : Y ) = H(Y )−H(Y | X ).

Properties:

I(X : Y ) = I(Y : X ) = H(X ) +H(Y )−H(X ,Y ),

I(X : Y ) ≤ H(X ), and I(X : Y ) ≤ H(Y ),

I(X : Y ) ≥ 0, with I(X : Y ) = 0 iff X ⊥⊥ Y (independent),

I(X : Y ) = H(X ) if and only if X = Function(Y ),

I(X : X ) = H(X ).

An Exercise !
A.R. Different Views of Information 10 / 21
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Definition: conditional mutual information between X and Y given Z

1st definition: I(X : Y | Z ) :=
∑

c I(X : Y | Z = c) Pr[Z = c],

2nd definition: I(X : Y | Z ) := H(Y | Z )−H(Y | X ,Z ).

3rd definition: I(X : Y | Z ) := H(X | Z ) +H(Y | Z )−H(X ,Y | Z ).

Exercise: these three definitions are equivalent.

Properties:

I(X : Y | Z ) ≥ 0,

I(X : Y | Z ) = I(Y : X | Z ),

I(X : Y | Z ) = H(X ,Z ) +H(Y ,Z )−H(X ,Y ,Z )−H(Z ).

A.R. Different Views of Information 11 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: conditional mutual information between X and Y given Z

1st definition: I(X : Y | Z ) :=
∑

c I(X : Y | Z = c) Pr[Z = c],

2nd definition: I(X : Y | Z ) := H(Y | Z )−H(Y | X ,Z ).

3rd definition: I(X : Y | Z ) := H(X | Z ) +H(Y | Z )−H(X ,Y | Z ).

Exercise: these three definitions are equivalent.

Properties:

I(X : Y | Z ) ≥ 0,

I(X : Y | Z ) = I(Y : X | Z ),

I(X : Y | Z ) = H(X ,Z ) +H(Y ,Z )−H(X ,Y ,Z )−H(Z ).

A.R. Different Views of Information 11 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: conditional mutual information between X and Y given Z

1st definition: I(X : Y | Z ) :=
∑

c I(X : Y | Z = c) Pr[Z = c],

2nd definition: I(X : Y | Z ) := H(Y | Z )−H(Y | X ,Z ).

3rd definition: I(X : Y | Z ) := H(X | Z ) +H(Y | Z )−H(X ,Y | Z ).

Exercise: these three definitions are equivalent.

Properties:

I(X : Y | Z ) ≥ 0,

I(X : Y | Z ) = I(Y : X | Z ),

I(X : Y | Z ) = H(X ,Z ) +H(Y ,Z )−H(X ,Y ,Z )−H(Z ).

A.R. Different Views of Information 11 / 21



measure of information: Shannon’s approach
Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1

pi

Definition: conditional mutual information between X and Y given Z

1st definition: I(X : Y | Z ) :=
∑

c I(X : Y | Z = c) Pr[Z = c],

2nd definition: I(X : Y | Z ) := H(Y | Z )−H(Y | X ,Z ).

3rd definition: I(X : Y | Z ) := H(X | Z ) +H(Y | Z )−H(X ,Y | Z ).

Exercise: these three definitions are equivalent.

Properties:

I(X : Y | Z ) ≥ 0,

I(X : Y | Z ) = I(Y : X | Z ),

I(X : Y | Z ) = H(X ,Z ) +H(Y ,Z )−H(X ,Y ,Z )−H(Z ).

A.R. Different Views of Information 11 / 21



measure of information: Shannon’s approach

Definition: (Shannon entropy)
For a random variable X taking k values with probabilities p1, . . . , pk

H(X ) :=
k∑

i=1

pi log
1
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Another Definition (triple mutual information):

I(X : Y : Z ) := I(X : Y )−H(X : Y | Z )
:= I(XY : Z )− I(X : Z | Y )− I(Y : Z | X )
:= H(X ) +H(Y ) +H(Z )−H(X ,Y )−H(X ,Z )−H(Y ,Z )

+H(X ,Y ,Z )

Exercise: these three definitions are equivalent.
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Shannon entropy: entropic profiles

* For a random variable X the value H(X ) can be any non-negative number

* For jointly (X1,X2) we have

H(X1), H(X2), H(X1,X2)

H(X1 | X2), H(X2 | X1)

I(X1 : X2)

X1 X2

H(X1 | X2) I(X1 : X2) H(X2 | X1)

but only 3 parameters are enough

e.g. H(X1),H(X2),H(X1,X2) allow to find H(X1 | X2), H(X2 | X1), I(X1 : X2)

or H(X1 | X2), H(X2 | X1) and I(X1 : X2) allow to find H(X1),H(X2),H(X1,X2).

constraints: 0 ≤ H(X1), H(X2) ≤ H(X1,X2) ≤ H(X1) +H(X2)

equivalently: H(X1 | X2) ≥ 0, H(X2 | X1) ≥ 0, I(X1 : X2) ≥ 0
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X
1
:
X
2
| X

3
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I(X1 : X2 : X3)

but only 7 parameters are enough:

e.g. H(X1),H(X2), . . . allow to find all other quantities

or H(X1|X2,X3), . . ., I(X1 : X2 | X3), . . ., I(X1 : X2 : X3)
allow to find all other quantities
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7 parameters define the profile:

e.g. H(X1),H(X2), . . . allow to find all other quantities

or H(X1|X2,X3), . . ., I(X1 : X2 | X3), . . ., I(X1 : X2 : X3)
allow to find all other quantities

9 constraints: H(X1|X2,X3) ≥ 0, . . ., I(X1 : X2) ≥ 0, . . ., I(X1 : X2 | X3) ≥ 0, . . .

Exercise: no other inequalities for entropies of (X1,X2,X3)
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Shannon entropy: entropic profiles

* For jointly distributed (X1, . . . ,Xn) we have

H(X1), H(X2), . . .

H(X1,X2), H(X1,X3), . . . ,

H(X1,X2,X3), . . .

. . .

2n − 1 parameters that define the profile

classical constraints:

monotonicity:

concavity:

submodularity:
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H(Xi1 . . .XimXj1 . . .Xjs ) ≤ H(Xi1 . . .Xim) +H(Xj1 . . .Xjs )
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H(Xi1 . . .XimXj1 . . .XjsXk1 . . .Xkℓ) +H(Xk1 . . .Xkℓ) ≤
≤ H(Xi1 . . .XimXk1 . . .Xkℓ) +H(Xj1 . . .XjsXk1 . . .Xkℓ)
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Shannon entropy: entropic profiles
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H(X1,X2), H(X1,X3), . . . ,

H(X1,X2,X3), . . .

. . .

2n − 1 parameters that define the profile

classical constraints:

for M = {i1, . . . , im} we denote H(XI) = H(Xi1 . . .Xim)

monotonicity:

H(XI) ≤ H(XI∪J ) or equivalently H(XJ | XI) ≥ 0

concavity:

H(XI∪J ) ≤ H(XI) +H(XJ ) or equivalently I(XI : XJ ) ≥ 0

submodularity:

H(XI∪J∪K) +H(XK) ≤ H(XI∪K) +H(XJ∪K)
or equivalently I(XI : XJ | XK) ≥ 0.
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Shannon entropy: entropic profiles

* For jointly distributed (X1, . . . ,Xn) we have

H(X1), H(X2), . . .

H(X1,X2), H(X1,X3), . . . ,

H(X1,X2,X3), . . .

. . .

2n − 1 parameters that define the profile

Shannon, the 1940s:

H(XJ | XI) ≥ 0

I(XI : XJ ) ≥ 0

I(XI : XJ | XK) ≥ 0

Question: Are there any other inequalities?

Zhang–Yeung 1998: Yes, another inequality for n = 4 random variables!

Matus 2007: infinitely many inequalities with n ≥ 4 random variables!!
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Question: Are there any other inequalities?

Zhang–Yeung 1998: Yes, another inequality for n = 4 random variables!

Matus 2007: infinitely many inequalities with n ≥ 4 random variables!!
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this vector of 2n − 1 reals ⇒ an entropic profile

Notation: Pn := entropic profiles for all (X1, . . . ,Xn)

Theorem. P̄n (topological closure) is a convex cone.

Exercise: prove it.

Fact:

the case n ≤ 3 is simple : P̄1, P̄2, P̄3 are defined by Shannon’s inequalities
H(XJ | XI) ≥ 0, I(XI : XJ ) ≥ 0, I(XI : XJ | XK) ≥ 0

the case n ≥ 4 is hard : P̄n is not polyhedral

(and not filly understood)
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Shannon entropy: symmetric key encryption

setting:

Sender and Receiver sample a common secret key

Sender wants to send a random message

Sender transmits ciphertext = Enc(message, key)

Receivers computes message = Dec(ciphertext, key)

requirements:

ciphertext is a function of (message, key)

message is a function of (ciphertext, key)

message and ciphertext are independent
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setting:

Sender and Receiver sample a common secret key

Sender wants to send a random message

Sender transmits ciphertext = Enc(message, key)

Receivers computes message = Dec(ciphertext, key)

requirements:

ciphertext is a function of (message, key)

message is a function of (ciphertext, key)

message and ciphertext are independent

solution: Vernam’s scheme / one-time pad,
where message, key, ciphertext ∈ {0, 1}n

ciphertext = bitwise XOR of message and key

key = bitwise XOR of message and ciphertext
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Shannon entropy: symmetric key encryption
setting:

Sender and Receiver sample a common secret key

Sender wants to send a random message

Sender transmits ciphertext = Enc(message, key)

Receivers computes message = Dec(ciphertext, key)

requirements:

ciphertext is a function of (message, key)

message is a function of (ciphertext, key)

message and ciphertext are independent

Theorem (Shannon): H(key) ≥ H(message)
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Shannon entropy: perfect secret sharing (threshold scheme)
setting: fix integer numbers n and t ≤ n.

Dealer samples a secret key S0 and shares S1,. . . Sn

for i = 1, . . . , n the i-th participant gets the share Si

correctness: every t participants together can compute S0
H(S0 | Si1 . . . Sit ) = 0

security: every ≤ (t − 1) participants together have no information on S0
H(S0 | Sj1 . . . Sjt−1) = H(S0)

solution (Shamir) : fix a field F (with > n elements)
fix elements x0, x1, . . . , xn ∈ F

Dealer samples a random polynomial
P(x) = a0+ a1x + . . .+ at−1x

t−1 over F

secret key S0 := P(x0) shares
Si = P(xi )

S0 S1

S2

S3
S4

S5
S6

S7

S8
S9

S10

Fq

Fq

Exercise: prove correctness and security of the Shamir scheme

Exercise: prove that in every correct and secure scheme of secret sharing
H(Si ) ≥ H(S0) for i = 1, . . . , n
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Shannon entropy: perfect secret sharing (Π-scheme)

Dealer samples a secret key S0 and shares SA,SB ,SC ,SD for 4 participants

correctness: the pairs {SA,SB}, {SB ,SC}, {SC ,SD} allow to get the secret

i.e., H(S0 | SASB) = 0, H(S0 | SBSC ) = 0, H(S0 | SCSD) = 0

security: other pairs get no information on the secret

i.e., H(S0 | SASC ) = H(S0), H(S0 | SASD) = H(S0), H(S0 | SBSD) = H(S0)

Exercise: construct a correct and secure scheme of secret sharing such that

max{H(SA),H(SB),H(SC ),H(SD)} ≤ 3
2H(S0)

Exercise: prove that in every correct and secure scheme of secret sharing

max{H(SA),H(SB),H(SC ),H(SD)} ≥ 3
2H(S0)

Theorem (Laszlo Csirmaz): one can formulate the conditions of correctness
and security for n participants so that for every secret sharing scheme

max
1≤i≤n

H(Si ) ≥ Ω(n/ log n) ·H(S0)

Much simpler fact: for all conditions of correctness and security there exists a
secret sharing scheme such that H(Si ) ≤ 2O(n) ·H(S0) for all i
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