UiT the Arctic University, October 2025.

Fall school on Geometry in Cryptography and Communication.

Mini-course Different Views of Information. Exercises Part II.

Exercise 1. Use the definition of Kolmogorov complexity and prove formally

- $C(\mathbf{x}) \le |\mathbf{x}| + O(1),$
- $C(\mathbf{x}\mathbf{x}) \le |\mathbf{x}| + O(1).$

Exercise 2. Use the definition of Kolmogorov complexity and prove formally that

- for every n there exists a bit string \mathbf{x} of length n with complexity at least n,
- there exists a λ such that for every n, at least 99% of strings of length n satisfy $n \lambda \leq C(\mathbf{x}) \leq n + \lambda$.
- if a bit string \mathbf{x} contains $p_0 n$ zeros and $p_1 n$ ones, then $C(\mathbf{x}) \leq \log \frac{n!}{(p_0 n)! \cdot (p_1 n)!} + O(\log n) = \left(p_0 \log \frac{1}{p_0} + p_1 \log \frac{1}{p_1}\right) n + O(\log n)$

Exercise 3. Prove that for all sufficiently large n, every n-bit string \mathbf{x} such that $C(\mathbf{x}) \geq n$ contains as a factor the string 01010001.

Exercise 4. Prove that in every *n*-bit string **x** such that $C(\mathbf{x}) \ge n$ there is a factor of all zeros $\underbrace{000...0}_{\log k}$ of

length $k \ge \Omega(\log n)$.

Exercise 5. Use the definition of conditional Kolmogorov complexity and prove formally

- (a) $C(\mathbf{x} \mid \mathbf{y}) \le C(\mathbf{x}) + O(1)$,
- (b) $C(\mathbf{x} \mid \mathbf{x}) = O(1)$,
- (c) $C(\mathbf{x}^{-1} \mid \mathbf{x}) = O(1)$, where \mathbf{x}^{-1} is the word \mathbf{x} written in reverse order.

Exercise 6. Prove that

- (a) the mapping $\mathbf{x} \mapsto C(\mathbf{x})$ is not a computable function (i.e., given \mathbf{x} , we cannot compute $C(\mathbf{x})$ algorithmically);
- (b) there is no algorithm that, for every input $n \in \mathbb{N}$, produces a string \mathbf{x}_n such that $C(\mathbf{x}_n) > n$.

Exercise 7. Almost all (all except for finitely many) statements of the form " $C(\mathbf{x}) > |\mathbf{x}|/2$ " are true but unprovable. (This gives a version of Gödel's incompleteness theorem.)

Exercise 8. Prove that

- (a) $C(\mathbf{x}, \mathbf{y}) \le C(\mathbf{x}) + C(\mathbf{y}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- (b) $C(\mathbf{x}, \mathbf{y}) \le C(\mathbf{x}) + C(\mathbf{y} \mid \mathbf{x}) + O(\log(|\mathbf{x}| + |\mathbf{y}|))$
- (c) $C(\mathbf{x}, \mathbf{y}) \ge C(\mathbf{x}) + C(\mathbf{y} \mid \mathbf{x}) O(\log(|\mathbf{x}| + |\mathbf{y}|))$ [Kolmogorov-Levin theorem]

Exercise 9. Prove that for all strings x, y, z

$$2C(\mathbf{x}, \mathbf{y}, \mathbf{z}) \le C(\mathbf{x}, \mathbf{y}) + C(\mathbf{x}, \mathbf{z}) + C(\mathbf{y}, \mathbf{z}) + O(\log n),$$

where n is the sum of lengths of \mathbf{x} , \mathbf{y} , and \mathbf{z} .

Exercise 10. Let \mathbb{F}_q be a finite field with q elements, and let $\mathbb{P}^2(\mathbb{F}_q)$ be the projective plane over this field. Let (\mathbf{x}, \mathbf{y}) be an *incidence* on this plane, i.e., \mathbf{x} is a *point* in this plane, and \mathbf{y} is a u*line* that goes through the chosen point.

- (a) Prove that $C(\mathbf{x}) \le 2n + O(\log n)$, $C(\mathbf{y}) \le 2n + O(\log n)$, $C(\mathbf{x}, \mathbf{y}) \le 3n + O(\log n)$, where $n = \log q$.
- (b) Prove that if $C(\mathbf{x}, \mathbf{y}) \geq 3n$ (where again $n = \log q$), then

$$C(\mathbf{x}) = 2n \pm O(\log n), C(\mathbf{y}) \pm 2n + O(\log n), C(\mathbf{x} \mid \mathbf{y}) = n \pm O(\log n), C(\mathbf{y} \mid \mathbf{x}) = n \pm O(\log n).$$

(c) Prove that if $C(\mathbf{x}, \mathbf{y}) \geq 3n$ (for $n = \log q$), then for any \mathbf{z} of length at most 100n we have

$$C(\mathbf{z}) \le 2 \cdot C(\mathbf{z} \mid \mathbf{x}) + 2 \cdot C(\mathbf{z} \mid \mathbf{y}) + O(\log n)$$