UiT the Arctic University, October 2025.

Fall school on Geometry in Cryptography and Communication.

Mini-course Different Views of Information. Exercises Part I.

Exercise 1. There are n identical-looking coins, one of which is counterfeit and differs in weight (either lighter or heavier) from the others. Using a balance scale without additional weights, determine the minimum number of weighings needed to identify the counterfeit coin.

(a)
$$n = 15$$
; (b) $n = 14$; (c) $n = 12$

Exercise 2. Prove that for any probability distribution (p_1, \ldots, p_k) (with $p_i \ge 0$ for each i, and $\sum p_i = 1$) we have

$$0 \le \sum p_i \log \frac{1}{p_i} \le \log k.$$

Explain when this expression (Shannon's entropy) is equal to 0 and when it attains the value $\log k$.

Exercise 3. Find a probability distribution (p_1, \ldots, p_{100}) such that $p_i > 0$ for each $i = 1, \ldots, 100$, and

$$\sum p_i \log \frac{1}{p_i} \le 2.$$

Exercise 4. Let X_{ϵ} be a random variable such that

$$Prob[X_{\epsilon} = 1] = \epsilon$$

$$Prob[X_{\epsilon} = 0] = 1 - \epsilon.$$

Prove that $H(X_{\epsilon}) \to 0$ as $\epsilon \to 0$.

Exercise 5. Let \mathbb{F}_q be a finite field with q elements, and let $\mathbb{P}^2(\mathbb{F}_q)$ be the projective plane over this field. Let (X,Y) be a randomly chosen *incidence* in this plane : X is a uniformly random *point*, and Y is a uniformly random *line* passing through X. Compute H(X), H(Y), and H(X,Y).

Exercise 6. For jointly distributed (X,Y)

- (a) H(X, Y) < H(X) + H(Y);
- (b) moreover, H(X,Y) = H(X) + H(Y), if and only if X and Y are independent

Exercise 7. For jointly distributed (X, Y)

- (a) $H(X, Y) = H(X \mid Y) + H(Y)$,
- (b) $H(X \mid Y) \ge 0$, with $H(X \mid Y) = 0$ if and only if X = Function(Y).

Exercise 8. For jointly distributed (X, Y)

- (a) I(X : Y) = I(Y : X) = H(X) + H(Y) H(X, Y),
- (b) $I(X:Y) \leq H(X)$, and $I(X:Y) \leq H(Y)$,
- (c) $I(X:Y) \ge 0$, with I(X:Y) = 0 if and only if X and Y are independent,
- (d) I(X : Y) = H(X) if and only if X = Function(Y),
- (e) I(X : X) = H(X).

Exercise 9. Let X and Y be two random variables distributed both on $\{1, ... k\}$ (for some k > 1), and $\text{Prob}[X \neq Y] < \epsilon$. Prove that $\text{H}(X \mid Y) < 1 + \epsilon \log(k - 1)$.

Exercise 10. Prove that the following three definitions of $I(X:Y\mid Z)$ are equivalent:

1st definition. $I(X : Y \mid Z) := \sum_{c} I(X : Y \mid Z = c) \Pr[Z = c].$

2nd definition. $I(X : Y \mid Z) := H(Y \mid Z) - H(Y \mid X, Z)$.

3rd definition. $I(X : Y \mid Z) := H(X \mid Z) + H(Y \mid Z) - H(X, Y \mid Z)$.

Exercise 11. Prove that the following three definitions of I(X:Y:Z) are equivalent:

- (a) $I(X : Y : Z) := I(X : Y) H(X : Y \mid Z)$
- (b) $I(X : Y : Z) := I(XY : Z) I(X : Z \mid Y) I(Y : Z \mid X)$
- (c) I(X:Y:Z) := H(X) + H(Y) + H(Z) H(X,Y) H(X,Z) H(Y,Z) + H(X,Y,Z)

Exercise 12. (a) Construct a joint distribution (X, Y, Z) such that $I(X : Y \mid Z) = 0$ but I(X : Y) > 0. (b) Construct a joint distribution (X, Y, Z) such that I(X : Y) = 0 but $I(X : Y \mid Z) > 0$.

Exercise 13. Construct a joint distribution (X, Y, Z) such that

$$I(X : Y) = I(X : Z) = I(Y : Z) = 0$$

and

$$I(X : Y \mid Z) = I(X : Z \mid Y) = I(Y : Z \mid X) = 1.$$

Exercise 14. Prove that for all jointly distributed (X, Y, Z)

$$2H(X, Y, Z) \le H(X, Y) + H(X, Z) + H(Y, Z).$$

Exercise 15. Prove that for all jointly distributed (X, Y, Z) such that $H(Z \mid X) = 0$ and $H(Z \mid Y) = 0$ we have

$$H(Z) \leq I(X:Y)$$
.

Exercise 16. Prove that for all Markov chains $X \to Y \to Z$ we have

$$I(X:Z) \le I(X:Y)$$
 and $I(X:Z) \le I(Y:Z)$.

Exercise 17. Prove that for all Markov chains $W \to X \to Y \to Z$ we have

$$I(W:Z) \le I(X:Y).$$

Exercise 18. For the entropy values of (X_1, X_2, X_3) we have the following $3 \times 3 = 9$ linear constraints:

$$H(X_1 \mid X_2, X_3) \ge 0, \dots, I(X_1 : X_2) \ge 0, \dots, I(X_1 : X_2 \mid X_3) \ge 0, \dots$$

Prove that there is no other linear inequalities for entropies of three random variables besides these ones (and their linear combinations) that are true for all distributions (X_1, X_2, X_3) .

Hint: try to determine the extreme rays of the cone $\overline{\mathbf{P}}_3$.

Exercise 19. Let \mathbf{P}_n be the set of entropic profiles for all (X_1, \ldots, X_n) .

- (a) If two vectors v and w belong to \mathbf{P}_n then the sum v+w also belongs to \mathbf{P}_n .
- (b) If a vector v belongs to \mathbf{P}_n then for every natural n the vector $n \cdot v$ also belongs to \mathbf{P}_n .
- (c) If a vector v belongs to \mathbf{P}_n then for every real $\lambda>0$ the vector $\lambda\cdot v$ also belongs to $\overline{\mathbf{P}}_n$
- N.B.: We do *not* claim that $\lambda \cdot v$ belongs to \mathbf{P}_n .
- (d) Prove that $\overline{\mathbf{P}}_n$ (topological closure of \mathbf{P}_n) is a *convex cone* (show that $\overline{\mathbf{P}}_n$ is convex and that it is a cone).

Exercise 20. Prove correctness and security of the Shamir secret sharing scheme.

Exercise 21. (a) Assume that $I(S_0:S_1)=0$ and $H(S_0\mid S_1,S_2)=0$. Prove that $H(S_2)\geq H(S_0)$.

(b) Let $1 < t \le n$. Assume in some secret sharing scheme with n participants every t participants can find the secret S_0 while every t-1 participants get no information on S_0 . Prove that fro every $i=1,\ldots,n$ we have $H(S_i) \ge H(S_0)$.

Exercise 22. We consider secret sharing schemes with a random secret key S_0 and and shares S_A , S_B , S_C , S_D such that

- (correctness) the pairs $\{S_A, S_B\}$, $\{S_B, S_C\}$, $\{S_C, S_D\}$ allow to get the secret i.e., $H(S_0 \mid S_A, S_B) = 0$, $H(S_0 \mid S_B, S_C) = 0$, $H(S_0 \mid S_C, S_D) = 0$
- (security) other pairs of shares give no information on the secret, i.e., $H(S_0 \mid S_A, S_C) = H(S_0)$, $H(S_0 \mid S_A, S_D) = H(S_0)$, $H(S_0 \mid S_B, S_D) = H(S_0)$.
- (a) Construct a correct and secure scheme of secret sharing such that

$$\max\{\mathbf{H}(S_A),\mathbf{H}(S_B),\mathbf{H}(S_C),\mathbf{H}(S_D)\} \leq \frac{3}{2}\mathbf{H}(S_0)$$

(b) Prove that in every correct and secure scheme of secret sharing

$$\max\{\mathbf{H}(S_A),\mathbf{H}(S_B),\mathbf{H}(S_C),\mathbf{H}(S_D)\} \geq \frac{3}{2}\mathbf{H}(S_0)$$