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Public-Key Cryptography



Symmetric vs Asymmetric Encryption
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Birth of Public-Key Cryptosystems

▶ 1970: first known (secret) report on public-key cryptography

by CESG, UK

▶ 1976: Diffie and Hellman public introduction to conceptual
public-key cryptography

▶ Avoid reliance on third-parties for key distribution
▶ Allow digital signatures

▶ 1977: RSA Cryptosystem

▶ ....

3 / 39



Public and Private Keys

Public Key (PB)

▶ Public, Available to anyone

▶ For secrecy: used in encryption

▶ For authentication: used in decryption

Private Key (PR)

▶ Secret, known only by owner

▶ For secrecy: used in decryption

▶ For authentication: used in encryption
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Confidentiality with Public Key Crypto

Message
Source

Cryptanalyst

Key Pair
Source

Destination
X

P̂Rb

PUb

Figure 9.2   Public-Key Cryptosystem: Secrecy

Encryption
Algorithm

Decryption
Algorithm

PRb

X̂

Source A Destination B

Y = E[PUb, X] X =
D[PRb, Y]

▶ Encrypt using receivers public key

▶ Decrypt using receivers private key

▶ Only the person with private key can successful decrypt
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Authentication with Public Key Crypto

Message
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Cryptanalyst

Key Pair
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Figure 9.3  Public-Key Cryptosystem: Authentication

Encryption
Algorithm

Decryption
Algorithm

Source A Destination B

Y = E[PRa, X] X =
D[PUa, Y]

▶ Encrypt using senders private key

▶ Decrypt using senders public key

▶ Only the person with private key could have encrypted
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Applications of Public Key Cryptosystems

▶ Secrecy, encryption/decryption of data (messages, keys,..)

▶ Digital signature, sign message with private key

▶ Key exchange, share secret session keys
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Catching up on NIST PQC project

NIST initiated the Post-Quantum Cryptography (PQC)

Standardization Process in 2016.

▶ Selecting quantum-resistant public-key cryptographic

algorithms

Dilithium (module lattices)

Falcon (NTRU lattices)

SPHINCS+ (hash-based)

have been standardized for signatures.

▶ Kyber (module lattices) was the only KEM standardized.

▶ Need for more diversity of computational hardness

assumptions to reduce the risk of a single cryptanalytic

breakthrough.

Even more since https://eprint.iacr.org/2024/555.
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HQC

NIST advanced four more algorithms as KEM candidates to the

fourth round.

Code-based Isogeny-based

BIKE SIKE1

HQC

Classic McEliece

HQC is an IND-CCA2 KEM selected for standardization.

1https://issikebrokenyet.github.io/
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Difficult problems for code-based cryptography

HQC is based on the hardness of (variants of) the Searching

Syndrome Decoding problem (SSD) and the Decisional Syndrome

Decoding problem (DSD).

Searching Syndrome Decoding problem

Let n, k be positive integers. Given H, y ∈ F(n−k)×n
2 × Fn−k

2

where y = xH⊺ for certain x with weight ω, find x ∈ Fn
2 such that

y = xH⊤ and wt(x) = ω.

▶ This problem has been proven to be NP-complete.
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Difficult problems for code-based cryptography

Decisional Syndrome Decoding problem

Let n, k be positive integers. Given (H, y) ∈ F(n−k)×n
2 × Fn−k

2

where y = xH⊺ = for certain x with weight ω, decide with

non-negligible advantage whether (H, y) came from the SD

distribution or the uniform distribution.

▶ The advantage of the attacker is measured as

Adv(A) = 2 · P(success)− 1.

▶ The DSD problem helps to achieve IND-CCA2 security.
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Hamming Quasi-Cyclic

▶ Quasi-Cyclic codes have their equivalent problems: the

s-QCSD and s-DQCSD problems.

s-DQCSD problem

Given (H, y) ∈ F(sn−n)×sn
2 × Fsn−n

2 , the Decisional s-Quasi-Cyclic

Syndrome Decoding Problem s − DQCSD(n, ω) asks to decide

with non-negligible advantage whether (H, y) came from the

s-QCSD distribution or the uniform distribution over

F(sn−n)×sn
2 × Fsn−n

2 .
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For many years the decoder was part of the private key for

code-based cryptosystems. It was usually masked into a random

public code like for McEliece.

McEliece-KeyGen

G: generator matrix of a binary Goppa code

[n, k , 2t + 1].

S: a non-singular k × k matrix.

P: an n × n permutation matrix.

Private key: (G ,S ,P)

Public key: (G ′, t) such that G ′ = SGP

HQC brings significant changes! The decoder is public and the

trapdoor becomes the mask put on the plaintext. The decoder

works only if able to remove the mask.
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Hamming Quasi-Cyclic

There are two codes:

1. One public code to create the ciphertext.

This code doesn’t need to remove errors so we can focus on

security.

Chosen Quasi-Cyclic for its efficiency and the compactness of

ciphertexts.

2. One public code to remove the errors.

This code doesn’t need to be secure so we can focus on

maximum error correction.

A concatenation of a Reed-Solomon and a (duplicated)

Reed-Muller code.
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Hamming Quasi-Cyclic

Drop the (x) for polynomials so g(x) becomes g. Public, private

and one-time random data.

KeyGen

G a generator matrix for a public code Cpub.
Random h ∈ R where R = F2[x ]/(x

n − 1).

Random x, y ∈ R×R such that wt(x) = wt(y) = w .

The syndrome s = x+ hy

Private key: (x, y)

Public key: (h, s)
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Hamming Quasi-Cyclic

Encryption

Let a message m ∈ R.

Random e ∈ R such that wt(e) = we .

Random (r1, r2) ∈ R×R such that

wt(r1) = wt(r2) = wr .

u = r1 + hr2

v = mG+ sr2 + e

The ciphertext is the tuple (u, v).

u carries information to remove the mask.

v is the actual part containing the plaintext.
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Hamming Quasi-Cyclic

Decryption

m = DecodeG(v − uy)

v = mG+ sr2 + e = mG+ xr2 + hyr2 + e

v − uy = mG+ xr2 + hyr2 + e− yr1 − hyr2

= mG+ xr2
wwr

+ e
we

− yr1
wwr

= mG+ e′
2wwr+we

Since wt(e′) ≤ 2wwr + we , we want to choose parameters

w ,wr ,we as large as possible so that wt(e′) > ⌊d−1
2 ⌋ with

negligible probability.
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Concatenated codes

External code
Ce [ne , ke ,≥ de ]

m ∈ Fke
2m c ∈ Fne

2m

ci ∈ F2m
∼= Fm

2

c0

c1

. . .

cne

Internal code
Ci [ni , ki = m,≥ di ]

ĉi ∈ Fni
2ĉ0 ĉ1 . . . ĉne

ĉ = (ĉ0, ĉ1, . . . , ĉne ) ∈ Fneni
2

The external code is transformed into a binary code of parameters

[neni , keki ,≥ dedi ].
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2

The external code is transformed into a binary code of parameters

[neni , keki ,≥ dedi ].

18 / 39



Reed-Solomon codes

A Reed-Solomon code with elements in F2m has the following

parameters:

▶ Length n = 2m − 1

▶ Minimum distance d = n − k + 1 chosen by construction.

▶ Error correction capacity t = ⌊d−1
2 ⌋

Let α be a primitive element of F2m , the generator polynomial

g(x) of the RS[n, k , d ] code is given by

g(x) = (x + α)(x + α2) . . . (x + αn−k)

Code n k t R

RS-1 255 225 15 1.133

RS-2 255 223 16 1.143

RS-3 255 197 29 1.294

Table 1: Reed-Solomon codes and their rates [1] 19 / 39
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Shortened Reed-Solomon codes

Reed-Solomon codes can be shortened without altering the error

correction capacity.

▶ Shorten by s bits to obtain the RS[n − s, k − s, d ] code.

The encoder takes k − s bits of payload and s padding bits and

outputs a codeword holding n − s useful symbols and s bits of

padding that are easy to discard with systematic encoding.

We re-insert those s padding bits into the decoder.

Code n k t R

RS-1 255 225 15 1.133

RS-2 255 223 16 1.143

RS-3 255 197 29 1.294

RS-S1 46 16 15 2.875

RS-S2 56 24 16 2.333

RS-S3 90 32 29 2.813

Table 2: Shortened Reed-Solomon codes and their rates.[1]
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Decoding Reed-Solomon codes (Recap)

1 - Calculate the syndromes.

We receive r(x) = c(x) + e(x) and assume wt(e) ≤ t.

▶ e = (0, . . . , 1
i1
, . . . , 1

i2
, . . . , 1

it
, . . . , 0)

▶ e(x) = x i1 + x i2 + . . .+ x it

Let F2m = ⟨α⟩, all αi are roots of g(x) so of c(x).

The syndrome si = r(αi ) = c(αi ) + e(αi ) = e(αi )

For example:

▶ s1 = e(α) = αi1 + αi2 + αi3 + . . .+ αit

▶ s2 = e(α2) = α2i1 + α2i2 + α2i3 + . . .+ α2it

▶ s3 = e(α3) = α3i1 + α3i2 + α3i3 + . . .+ α3it

▶ . . .
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Decoding Reed-Solomon codes

2 - Error Locator Polynomial

Let zj = αij , define the polynomial

σ(x) = (1 + z1x) · · · (1 + ztx)

= 1 + σ1x + σ2x
2 + . . .+ σtx

t

The σi are the error coefficients. Finding them allows us to find

the roots α−ij of σ(x) to locate the errors.
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Decoding Reed-Solomon codes

3 - Error coefficients.

Let us fix t = 3 for the following.

We have a linear relation:

si+4 + σ1si+3 + σ2si+2 + σ3si+1 = 0

for i = 0, 1, 2, i.e., s3 s2 s1

s4 s3 s2

s5 s4 s3


σ1σ2
σ3

 =

s4s5
s6


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Decoding Reed-Solomon codes

From the relation

si+4 + σ1si+3 + σ2si+2 + σ3si+1 = 0, i = 0, 1, . . . , t − 1

we can obtain σi ’s for σ(x).

Solving σ(x) = 0 gives the error locations i1, i2, . . . , it .
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Reed-Muller codes

Reed-Muller codes take advantage of Lagrange interpolation to

decode.

The message is a polynomial in m variables over Fq and of

algebraic degree at most r . This defines a RM(r ,m) code.

For r = 2,m = 3, let a message

f (x1, x2, x3) = f0 + f1x + f2x2 + f3x3 + f4x1x2 + f5x1x3 + f6x2x3

As such, Reed-Muller codes have dimension k =
∑r

i=0

(m
i

)
.

25 / 39
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Encoding Reed-Muller codes

The codeword of a message consists on all possible evaluation

points. Over F2, that makes the length of the code n = 2m.

f (0, 0, 0) = c0

f (0, 0, 1) = c1

f (0, 1, 0) = c2

. . .

f (1, 1, 1) = cn−1

c = (c0, . . . , cn−1) is the codeword.
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Duplicated Reed-Muller codes

A µ-duplicated Reed-Muller code is simply repeating µ times the

codeword symbols.

HQC instance RM code Multiplicity µ Duplicated RM code

hqc-128 [128, 8, 64] 3 [384, 8, 192]

hqc-192 [128, 8, 64] 5 [640, 8, 320]

hqc-256 [128, 8, 64] 5 [640, 8, 320]

Table 3: Duplicated Reed-Muller codes.[1]

Let µ = 3, a duplicated codeword c′ from c is

c′ = (c0, c0, c0, c1, c1, c1, . . . , cn−1, cn−1, cn−1).
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Decoding in HQC - overview

RS-S code
m ∈ Fke

2m c ∈ Fne
2m

ci ∈ F2m
∼= Fm

2

c0

c1

. . .

cne

µ-RM code

ĉi ∈ Fni
2ĉ0 ĉ1 . . . ĉne

ĉ = (ĉ0, ĉ1, . . . , ĉne ) ∈ Fneni
2
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Decrypting (decoding) failure rate

Decryption

m = Decode(v − uy)

v = mG+ sr2 + e = mG+ xr2 + hyr2 + e

v − uy = mG+ xr2
wwr

+ e
we

− yr1
wwr

= mG+ e′
2wwr+we

▶ v = mG + sr2 + e is a noisy codeword but s = x + hy is not a

low weight polynomial. Its noise is way above the decoding

radius.

▶ if wt(e′) is outside the decoding radius, we face a decoding

failure.
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Fast Decoding of the 1-st order Reed-Muller Codes

The 1-st order RM codes can be efficiently decoded using a fast

Hadamard transform. This can be efficiently done in 3 steps:

1. Build the 2m-order Hadamard matrix.

2. Apply Binary Phase Shift Keying on the received word r .

3. Compute its Walsh coefficients.

The Hadamard matrix of order 2m is defined as

H2m = H2 ⊗ H2m−1 =

[
H2m−1 H2m−1

H2m−1 −H2m−1

]
with H2 =

[
1 1

1 −1

]
,

Actually this recursion helps achieve fast transform and drop the

complexity from O(2m × 2m) to O(m2m).
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Decrypting (decoding) failure rate

Since Reed-Muller codes follow a maximum-likelihood strategy for

decoding, there is no exact decoding probability formula.

There is an upper bound for the DFR of the concatenated code

given by:

DFRC =
ne∑

k=te

(
ne
k

)
pkRM(1− pRM)ne−k

where pRM is the lower bound on the probability decoding of

Reed-Muller codes.
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DFR and security

Choosing w ,wr ,we for negligible failure probability.

Instance ne ni n w wr = we security DFR

hqc-128 46 384 17,669 66 75 128 < 2−128

hqc-192 56 640 35,851 100 114 192 < 2−192

hqc-256 90 640 57,637 131 149 256 < 2−256

Table 4: Security parameters for HQC.[1]

32 / 39



DFR and security

Structural attacks. A generic attack is the DOOM attack[6] that

gains O(
√
n) because of cyclicity (O(n) for MDPC).

Some attacks[3, 4, 6] are efficient when xn − 1 has many low

degree factors but become inefficient when

xn − 1 = (x − 1)(xn−1 + xn−2 + . . .+ x + 1) which is the case

when n is a primitive prime.

This is why n = neni + l is used in HQC. The last l bits are

truncated, breaking the quasi-cyclicity and weakening the attacker.

33 / 39



DFR and security

Structural attacks. A generic attack is the DOOM attack[6] that

gains O(
√
n) because of cyclicity (O(n) for MDPC).

Some attacks[3, 4, 6] are efficient when xn − 1 has many low

degree factors but become inefficient when

xn − 1 = (x − 1)(xn−1 + xn−2 + . . .+ x + 1) which is the case

when n is a primitive prime.

This is why n = neni + l is used in HQC. The last l bits are

truncated, breaking the quasi-cyclicity and weakening the attacker.

33 / 39



DFR and security

Security of code-based hard problems. The best attack remains

Prange’s ISD [5] of exponential order.

It has been more than 60 years and only improvements of the

exponent constant have been made.
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Performance of primitives

Instance KeyGen Encapsulation Decapsulation

hqc-128 105 197 360

hqc-192 244 460 746

hqc-256 447 844 1,410

Table 5: HQC performance (x86 64 kilocycles)[2]

Instance KeyGen Encapsulation Decapsulation

mceliece6960119 602,164 167 252

mceliece8192128 686,110 203 269

Table 6: Classic McEliece performance (x86 64 kilocycles)[2]
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Key size

Instance Public key Private key Ciphertext

hqc-128 2,249 56 4,497

hqc-192 4,522 64 9,042

hqc-256 7,245 72 14,485

Table 7: HQC key size (bytes)[2]

Instance Public key Private key Ciphertext

mceliece6960119 1,047,319 13,948 194

mceliece8192128 1,357,824 14,120 208

Table 8: Classic McEliece key size (bytes)[2]
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