The Roadmap from Polynomials to
Quantum-safe Cryptosystems

A perspective from discrete mathematics
Part 4/4: Code-based Cryptography and HQC

Chunlei Li (University of Bergen, Norway)

INCP2-2024/10213 on

Mathematical Theory of Data Transmission and Data Encryption
Oct. 6-10, 2025, Tromsg

Fall school on Geometry in Cryptography and Communication

1/39

Public-Key Cryptography

Symmetric vs Asymmetric Encryption

Conventional Encryption

Public-Key Encryption

Needed to Work:

1. The same algorithm with the same key is
used for encryption and decryption.

2. The sender and receiver must share the
algorithm and the key.

Needed for Security:

1. The key must be kept secret.

2. It must be impossible or at least
impractical to decipher a message if no
other information is available.

3. Knowledge of the algorithm plus

samples of ciphertext must be
insufficient to determine the key.

Needed to Work:

1.

2.

One algorithm is used for encryption and
decryption with a pair of keys, one for
encryption and one for decryption.

The sender and receiver must each have
one of the matched pair of keys (not the
same one).

Needed for Security:

1.

2.

One of the two keys must be kept secret.

It must be impossible or at least
impractical to decipher a message if no
other information is available.

Knowledge of the algorithm plus one of
the keys plus samples of ciphertext must
be insufficient to determine the other
key.

2/39

Birth of Public-Key Cryptosystems

» 1970: first known (secret) report on public-key cryptography
by CESG, UK

» 1976: Diffie and Hellman public introduction to conceptual
public-key cryptography
» Avoid reliance on third-parties for key distribution
» Allow digital signatures

» 1977: RSA Cryptosystem
> ...

3/39

Public and Private Keys

Public Key (PB)
» Public, Available to anyone
P For secrecy: used in encryption

» For authentication: used in decryption

Private Key (PR)
» Secret, known only by owner
» For secrecy: used in decryption

» For authentication: used in encryption

4/39

Confidentiality with Public Key Crypto

Source A

—

Cryptanalyst
J

A A

Destination B

— A

Message X Encryption
Source Algorithm

4

mY
Y =E[PUp, X] [

PU,

Decry!)tlon »| Destination
Algorithm X=
DIPRy, Y]
PRy

Key Pair
Source

Figure 9.2 Public-Key Cryptosystem: Secrecy

5/39

Authentication with Public Key Crypto

Source A

A
Cryptanalyst PR,

A A

Destination B

— — A

Decryption

Y

| Destination

Message X Encryption
Source Algorithm Y = E[PR,, X] 4 Algorithm e

PR,

DIPU,, Y]

PU,

Key Pair
Source

Figure 9.3 Public-Key Cryptosystem: Authentication

6/39

Applications of Public Key Cryptosystems

» Secrecy, encryption/decryption of data (messages, keys,..)
» Digital signature, sign message with private key

P> Key exchange, share secret session keys

7/39

Catching up on NIST PQC project

NIST initiated the Post-Quantum Cryptography (PQC)
Standardization Process in 2016.

» Selecting quantum-resistant public-key cryptographic
algorithms

8/39

https://eprint.iacr.org/2024/555

Catching up on NIST PQC project

NIST initiated the Post-Quantum Cryptography (PQC)
Standardization Process in 2016.

» Selecting quantum-resistant public-key cryptographic
algorithms
Dilithium (module lattices)
Falcon (NTRU lattices)
SPHINCS+ ()
have been standardized for signatures.

» Kyber (module lattices) was the only KEM standardized.

8/39

https://eprint.iacr.org/2024/555

Catching up on NIST PQC project

NIST initiated the Post-Quantum Cryptography (PQC)
Standardization Process in 2016.

» Selecting quantum-resistant public-key cryptographic
algorithms
Dilithium (module lattices)
Falcon (NTRU lattices)
SPHINCS+ ()
have been standardized for signatures.

» Kyber (module lattices) was the only KEM standardized.

» Need for more diversity of computational hardness
assumptions to reduce the risk of a single cryptanalytic
breakthrough.

Even more since https://eprint.iacr.org/2024/555.

8/39

https://eprint.iacr.org/2024/555

HQC

NIST advanced four more algorithms as KEM candidates to the
fourth round.

Code-based Isogeny-based
BIKE SIKE!
HQC

Classic McEliece

"https://issikebrokenyet.github.io/
9/39

https://issikebrokenyet.github.io/

HQC

NIST advanced four more algorithms as KEM candidates to the
fourth round.

Code-based Isogeny-based
BIKE SIKE!
HQC

Classic McEliece

HQC is an IND-CCA2 KEM selected for standardization.

"https://issikebrokenyet.github.io/
9/39

https://issikebrokenyet.github.io/

Difficult problems for code-based cryptography

HQC is based on the hardness of (variants of) the Searching

Syndrome Decoding problem (SSD) and the Decisional Syndrome
Decoding problem (DSD).

10/39

Difficult problems for code-based cryptography

HQC is based on the hardness of (variants of) the Searching

Syndrome Decoding problem (SSD) and the Decisional Syndrome
Decoding problem (DSD).

Searching Syndrome Decoding problem

Let n, k be positive integers. Given H,y € Fg"_k)xn x Fa—k

where y = xHT for certain x with weight w, find x € F5 such that
y =xH" and wt(x) = w.

10/39

Difficult problems for code-based cryptography

HQC is based on the hardness of (variants of) the Searching

Syndrome Decoding problem (SSD) and the Decisional Syndrome
Decoding problem (DSD).

Searching Syndrome Decoding problem

Let n, k be positive integers. Given H,y € Fg"_k)xn x Fa—k

where y = xHT for certain x with weight w, find x € F5 such that
y =xH" and wt(x) = w.

» This problem has been proven to be NP-complete.

10/39

Difficult problems for code-based cryptography

Decisional Syndrome Decoding problem

Let n, k be positive integers. Given (H,y) € anfk)xn X Fg_k
where y = xHT = for certain x with weight w, decide with
non-negligible advantage whether (H,y) came from the SD
distribution or the uniform distribution.

» The advantage of the attacker is measured as
Adv(A) = 2 - P(success) — 1.
» The DSD problem helps to achieve IND-CCA2 security.

11/39

Hamming Quasi-Cyclic

» Quasi-Cyclic codes have their equivalent problems: the
s-QCSD and s-DQCSD problems.

s-DQCSD problem

Given (H,y) € ng"_")xsn x F3""", the Decisional s-Quasi-Cyclic
Syndrome Decoding Problem s — DQCSD(n,w) asks to decide
with non-negligible advantage whether (H,y) came from the
s-QCSD distribution or the uniform distribution over

(sn—n)xsn sn—n
IF5 x F5".

12 /39

For many years the decoder was part of the private key for
code-based cryptosystems. It was usually masked into a random
public code like for McEliece.

McEliece-KeyGen

G: generator matrix of a binary Goppa code
[n, k,2t + 1].

S: a non-singular k x k matrix.
P: an n X n permutation matrix.

Private key: (G, S, P)
Public key: (G’, t) such that G’ = SGP

HQC brings significant changes! The decoder is public and the
trapdoor becomes the mask put on the plaintext. The decoder

works only if able to remove the mask.

13/39

Hamming Quasi-Cyclic

There are two codes:

1. One public code to create the ciphertext.
This code doesn’t need to remove errors so we can focus on
security.
Chosen Quasi-Cyclic for its efficiency and the compactness of
ciphertexts.

14 /39

Hamming Quasi-Cyclic

There are two codes:

1. One public code to create the ciphertext.
This code doesn’t need to remove errors so we can focus on
security.
Chosen Quasi-Cyclic for its efficiency and the compactness of
ciphertexts.

2. One public code to remove the errors.
This code doesn’t need to be secure so we can focus on
maximum error correction.
A concatenation of a Reed-Solomon and a (duplicated)
Reed-Muller code.

14 /39

Hamming Quasi-Cyclic

Drop the (x) for polynomials so g(x) becomes g. Public, private
and one-time random data.

15 /39

Hamming Quasi-Cyclic

Drop the (x) for polynomials so g(x) becomes g. Public, private
and one-time random data.

KeyGen
G a generator matrix for a public code Cpp.
Random h € R where R = F»[x]/(x" — 1).
Random x,y € R X R such that wt(x) = wt(y) = w.
The syndrome s = x + hy

Private key: (x,y)
Public key: (h,s)

15 /39

Hamming Quasi-Cyclic

Encryption
Let a message m € R.

Random e € R such that wt(e) = we.
Random (r1,r2) € R X R such that
wt(ry) = wt(ra) = w,.
u=ry+hr
v=mG+sry+e

The ciphertext is the tuple (u,v).

u carries information to remove the mask.

v is the actual part containing the plaintext.

16 /39

Hamming Quasi-Cyclic

Decryption

m = Decodeg(v — uy)

17 /39

Hamming Quasi-Cyclic

Decryption

m = Decodeg(v — uy)

v=mG + sr, + e = mG + xrp + hyr, + e

17 /39

Hamming Quasi-Cyclic

Decryption
m = Decodeg(v — uy)

v=mG + sr, + e = mG + xrp + hyr, + e

v_uy:mG+Xr2+hyr2+e_yrl_hyr2
=mG+xrp + e —yn

ww, We wwy

=mG+ e

2WWr+We

/

17 /39

Hamming Quasi-Cyclic

Decryption
m = Decodeg(v — uy)

v=mG + sr, + e = mG + xrp + hyr, + e

v_uy:mG+Xr2+hyr2+e_yrl_hyr2
=mG+xrp + e —yn

ww, We wwy

=mG+ e

2WWr+We

/

Since wt(e’) < 2ww, + w,, we want to choose parameters
w, w;, We as large as possible so that wt(e’) > | 25| with
negligible probability.

17 /39

Concatenated codes

ke
m € [F55,

¢ € Fym & FT

Co
Ne — >
External code c €y o
Colnerke,>de] [
s[e; Key Z e] ~ 7 Internal code
C,-[n,-,k,-:m.,Zd,-]
—_—
Cn,
—_—
T T T a A
b &G ‘ G © €I
&= (AO 617"'76;19) E]Fgem

18 /39

Concatenated codes

¢ € Fym & FT

o)
ke ne 7
m € Foh | External code | €< Tan a
Co[ne ke, >de) [
elne, ke, = de] ~ 1 Internal code
C,-[n,-,k;:m.,Zd;]
E——
Cn,
|
T T T o) (p
L—_ ~ GeT,
G G ‘ Cne i €%
e=(&,&,...,Ch,) EFPM

The external code is transformed into a binary code of parameters
[nen;, kek,', 2 ded,'].
18/39

Reed-Solomon codes

A Reed-Solomon code with elements in Fom has the following
parameters:

» Length n=2" -1
» Minimum distance d = n — k + 1 chosen by construction.

» Error correction capacity t = L%J

19/39

Reed-Solomon codes

A Reed-Solomon code with elements in Fom has the following
parameters:

» Length n=2" -1

» Minimum distance d = n — k + 1 chosen by construction.

» Error correction capacity t = L%J

Let o be a primitive element of Fom, the generator polynomial
g(x) of the RS[n, k, d] code is given by

g(x) = (x+a)(x+a?)...(x+a" k)

19/39

Reed-Solomon codes

A Reed-Solomon code with elements in Fom has the following
parameters:

» Length n=2"—1
» Minimum distance d = n — k + 1 chosen by construction.
d—IJ

» Error correction capacity t = | 5=

Let o be a primitive element of Fom, the generator polynomial
g(x) of the RS[n, k, d] code is given by

g(x) = (x+a)(x+a?)...(x+a" k)

Code | n k t R

RS-1 | 255 | 225 | 15 | 1.133
RS-2 | 255 | 223 | 16 | 1.143
RS-3 | 255 | 197 | 29 | 1.294

Table 1: Reed-Solomon codes and their rates [1] 19/39

Shortened Reed-Solomon codes

Reed-Solomon codes can be shortened without altering the error
correction capacity.

» Shorten by s bits to obtain the RS[n — s, k — s, d] code.

20/39

Shortened Reed-Solomon codes

Reed-Solomon codes can be shortened without altering the error
correction capacity.

» Shorten by s bits to obtain the RS[n — s, k — s, d] code.

The encoder takes k — s bits of payload and s padding bits and
outputs a codeword holding n — s useful symbols and s bits of
padding that are easy to discard with systematic encoding.

20/39

Shortened Reed-Solomon codes

Reed-Solomon codes can be shortened without altering the error

correction capacity.
» Shorten by s bits to obtain the RS[n — s, k — s, d] code.

The encoder takes k — s bits of payload and s padding bits and
outputs a codeword holding n — s useful symbols and s bits of
padding that are easy to discard with systematic encoding.

We re-insert those s padding bits into the decoder.

20/39

Shortened Reed-Solomon codes

Reed-Solomon codes can be shortened without altering the error

correction capacity.
» Shorten by s bits to obtain the RS[n — s, k — s, d] code.

The encoder takes k — s bits of payload and s padding bits and
outputs a codeword holding n — s useful symbols and s bits of
padding that are easy to discard with systematic encoding.

We re-insert those s padding bits into the decoder.

Code n k t R

RS-1 | 255 | 225 | 15 | 1.133
RS-2 | 255 | 223 | 16 | 1.143
RS-3 | 255 | 197 | 29 | 1.294
RS-S1 | 46 | 16 | 15 | 2.875
RS-S2 | 56 | 24 | 16 | 2.333
RS-S3 | 90 | 32 | 29 | 2.813 20/39

Decoding Reed-Solomon codes (Recap)

1 - Calculate the syndromes.

We receive r(x) = c(x) + e(x) and assume wt(e) < t.

21/39

Decoding Reed-Solomon codes (Recap)

1 - Calculate the syndromes.

We receive r(x) = c(x) + e(x) and assume wt(e) < t.

»e=(0,...,1,...,1,...,1,...,0)

i i it

> e(x) = xT +x2 4 .. 4 X

g ooy

21/39

Decoding Reed-Solomon codes (Recap)

1 - Calculate the syndromes.

We receive r(x) = c(x) + e(x) and assume wt(e) < t.
> e=(0,..,1.., 1., 1,...,0)
> e(x) = x" +1xi2 + 2 - 9= Xt"f

Let Fom = (@), all o' are roots of g(x) so of c(x).

The syndrome s; = r(a) = c(a') + e(a’) = e(a)

21/39

Decoding Reed-Solomon codes (Recap)

1 - Calculate the syndromes.

We receive r(x) = c(x) + e(x) and assume wt(e) < t.

»e=(0,...,1,...,1,...,1,...,0)

i1 12 I’t

> e(x) = xT +x2 4 .. 4 X
Let Fom = (o), all o are roots of g(x) so of c(x).
The syndrome s; = r(a) = c(a') + e(a’) = e(a)
For example:

> si=ela)=a'+a2+aB ... +ak

> 5 = e(a?) = a?t + a2 £ B ..+ a2

> s3=-e(a3)=0a3" +a32 £33 .. + 3

> ...

21/39

Decoding Reed-Solomon codes

2 - Error Locator Polynomial

Let z; = i, define the polynomial

o(x) =14 z1x) -+ (1 + zx)
= 1—0—01x—|—02X2—|—...+atxt
The o; are the error coefficients. Finding them allows us to find

the roots a~%i of o(x) to locate the errors.

22/39

Decoding Reed-Solomon codes

3 - Error coefficients.
Let us fix t = 3 for the following.

We have a linear relation:
Sit4 + 01Si43 + 02Si42 + 03Si41 =0

fori =0,1,2, i.e.,

S3 S 0§51 01 S4
Sy S3 S o2 = |Ss
S5 S4 S3 g3 S6

23/39

Decoding Reed-Solomon codes

From the relation
Siya +01Si13 + 02842+ 03541 =0, 7i=0,1,...,t—-1

we can obtain o;'s for o(x).

Solving o(x) = 0 gives the error locations i1, i, . . ., it.

24 /39

Reed-Muller codes

Reed-Muller codes take advantage of Lagrange interpolation to
decode.

25/39

Reed-Muller codes

Reed-Muller codes take advantage of Lagrange interpolation to

decode.

The message is a polynomial in m variables over Fg and of
algebraic degree at most r. This defines a RM(r, m) code.

25/39

Reed-Muller codes

Reed-Muller codes take advantage of Lagrange interpolation to

decode.

The message is a polynomial in m variables over Fg and of
algebraic degree at most r. This defines a RM(r, m) code.

For r =2, m =3, let a message

f(x1,x2,x3) = fo + fix + foxo 4 f3x3 + faxixo + fsx1x3 4 foxox3

25/39

Reed-Muller codes

Reed-Muller codes take advantage of Lagrange interpolation to

decode.

The message is a polynomial in m variables over Fg and of
algebraic degree at most r. This defines a RM(r, m) code.

For r =2, m =3, let a message

f(x1,x2,x3) = fo + fix + foxo 4 f3x3 + faxixo + fsx1x3 4 foxox3

As such, Reed-Muller codes have dimension k =37 (m)

]

25/39

Encoding Reed-Muller codes

The codeword of a message consists on all possible evaluation
points. Over [y, that makes the length of the code n = 2.

£(0,0,0) = ¢
£(0,0,1) = ¢
f(0,1,0) =
f(1,1,1) = cp1
c=(co,-..,Cn-1) is the codeword.

26 /39

Duplicated Reed-Muller codes

A p~duplicated Reed-Muller code is simply repeating u times the
codeword symbols.

‘ HQC instance ‘ RM code ‘ Multiplicity ‘ Duplicated RM code ‘

hqc-128 (128, 8, 64] 3 [384,8,192]
hqc-192 (128, 8, 64] 5 [640, 8, 320]
hqc-256 [128, 8, 64] 5 [640, 8, 320]

Table 3: Duplicated Reed-Muller codes.[1]

27/39

Duplicated Reed-Muller codes

A p~duplicated Reed-Muller code is simply repeating u times the
codeword symbols.

‘ HQC instance ‘ RM code ‘ Multiplicity ‘ Duplicated RM code ‘

hqc-128 (128, 8, 64] 3 [384,8,192]
hqc-192 (128, 8, 64] 5 [640, 8, 320]
hqc-256 [128, 8, 64] 5 [640, 8, 320]

Table 3: Duplicated Reed-Muller codes.[1]

Let u = 3, a duplicated codeword ¢’ from c is

/
c = (COa €, 0, C1,C1,€C1,.--,Cn—1,Cpn—1, Cnfl)-

27/39

Decoding in HQC - overview

¢ € Fym & FY

o
m € Fy;, c € o
— > RSScode —— a
— >
1-RM code
Cne
— >
T T T A n;
G a ‘ Ge €
&= (6, G,...,) € Frem

28/39

Decrypting (decoding) failure rate

Decryption

m = Decode(v — uy)

v=mG+srp + e =mG + xrp + hyry + e

v—uy=mG-+xrp+ e —yn

ww, We wwy

=mG+ ¢€

2Ww,+ We

» v =mG + s+ e is a noisy codeword but s = x+ hy is not a
low weight polynomial. Its noise is way above the decoding
radius.

29/39

Decrypting (decoding) failure rate

Decryption

m = Decode(v — uy)

v=mG+srp + e =mG + xrp + hyry + e

v—uy=mG-+xrp+ e —yn

ww, We wwy

=mG+ ¢€

2Ww,+ We

» v =mG + s+ e is a noisy codeword but s = x+ hy is not a
low weight polynomial. Its noise is way above the decoding
radius.

» if wt(e’) is outside the decoding radius, we face a decoding

failure. 29 /39

Fast Decoding of the 1-st order Reed-Muller Codes

The 1-st order RM codes can be efficiently decoded using a fast
Hadamard transform. This can be efficiently done in 3 steps:

1. Build the 2™-order Hadamard matrix.
2. Apply Binary Phase Shift Keying on the received word r.
3. Compute its Walsh coefficients.

30/39

Fast Decoding of the 1-st order Reed-Muller Codes

The 1-st order RM codes can be efficiently decoded using a fast
Hadamard transform. This can be efficiently done in 3 steps:

1. Build the 2™-order Hadamard matrix.

2. Apply Binary Phase Shift Keying on the received word r.

1
1|’

3. Compute its Walsh coefficients.

The Hadamard matrix of order 2™ is defined as

H2m71 Hszl

Hom = Hy ® Hym—1 =
2 2 2 ' H2m—1 —H2m71

with H, =

30/39

Fast Decoding of the 1-st order Reed-Muller Codes

The 1-st order RM codes can be efficiently decoded using a fast
Hadamard transform. This can be efficiently done in 3 steps:

1. Build the 2™-order Hadamard matrix.

2. Apply Binary Phase Shift Keying on the received word r.
3. Compute its Walsh coefficients.

The Hadamard matrix of order 2™ is defined as

H2m71 Hszl

Hom = Hy ® Hym—1 =
2 2 2 ' H2m—1 —H2m71

with H, =

1 1
1 -1’

Actually this recursion helps achieve fast transform and drop the
complexity from O(2™ x 2™) to O(m2™).

30/39

Decrypting (decoding) failure rate

Since Reed-Muller codes follow a maximum-likelihood strategy for
decoding, there is no exact decoding probability formula.

31/39

Decrypting (decoding) failure rate

Since Reed-Muller codes follow a maximum-likelihood strategy for
decoding, there is no exact decoding probability formula.

There is an upper bound for the DFR of the concatenated code
given by:

Ne n -
DFR¢ = Z (;) provi(1 — pru)"™ "

k=te

where pru is the lower bound on the probability decoding of
Reed-Muller codes.

31/39

DFR and security

Choosing w, w,, we for negligible failure probability.

Instance ‘ Ne ‘ n; ‘

n

‘ w ‘W,:We

security ‘ DFR

hqc-128 | 46 | 384 | 17,669 | 66 75 128 | <2718

hqc-192 | 56 | 640 | 35,851 | 100 114 192 | <2719

hqc-256 | 90 | 640 | 57,637 | 131 149 256 | < 272%
Table 4: Security parameters for HQC.[1]

32/39

DFR and security

Structural attacks. A generic attack is the DOOM attack|[6] that
gains O(4/n) because of cyclicity (O(n) for MDPC).

33/39

DFR and security

Structural attacks. A generic attack is the DOOM attack[6] that
gains O(4/n) because of cyclicity (O(n) for MDPC).

Some attacks[3, 4, 6] are efficient when x” — 1 has many low
degree factors but become inefficient when
x"—1=(x—1)(x""1+x""2 4 ...+ x+ 1) which is the case
when n is a primitive prime.

This is why n = nen; + I is used in HQC. The last / bits are
truncated, breaking the quasi-cyclicity and weakening the attacker.

33/39

DFR and security

Security of code-based hard problems. The best attack remains
Prange’s ISD [5] of exponential order.

It has been more than 60 years and only improvements of the
exponent constant have been made.

34/39

Performance of primitives

Instance | KeyGen | Encapsulation | Decapsulation
hqc-128 105 197 360
hqc-192 244 460 746
hqc-256 447 844 1,410

Table 5: HQC performance (x86-64 kilocycles)|[2]

Instance KeyGen | Encapsulation | Decapsulation
mceliece6960119 | 602,164 167 252
mceliece8192128 | 686,110 203 269

Table 6: Classic McEliece performance (x86-64 kilocycles)[2]

35/39

Key size

Instance | Public key | Private key | Ciphertext
hqc-128 2,249 56 4,497
hqc-192 4,522 64 9,042
hqc-256 7,245 72 14,485

Table 7: HQC key size (bytes)[2]

Instance Public key | Private key | Ciphertext
mceliece6960119 | 1,047,319 13,948 194
mceliece8192128 | 1,357,824 14,120 208

Table 8: Classic McEliece key size (bytes)[2]

36/39

References i

@ C. Aguilar-Melchor, J.-C. Deneuville, A. Dion, N. Aragon,
S. Bettaieb, L. Bidoux, O. Blazy, J. Bos, P. Gaborit, J. Lacan,
E. Persichetti, J.-M. Robert, P. Véron, and G. Zémor.
Hamming quasi-cyclic (hqc).
02 2025.
[4 G. Alagic, M. Bros, P. Ciadoux, D. Cooper, Q. Dang,
T. Dang, J. Kelsey, J. Lichtinger, Y.-K. Liu, C. Miller,
D. Moody, R. Peralta, R. Perlner, A. Robinson, H. Silberg,
D. Smith-Tone, and N. Waller.
Status report on the fourth round of the nist

post-quantum cryptography standardization process,
March 2025.

37/39

References ii

[Q. Guo, T. Johansson, and C. Léndahl.
A new algorithm for solving Ring-LPN with a reducible
polynomial, 2014.

[d C. Léndahl, T. Johansson, M. Shooshtari,
M. Ahmadian Attari, and M. Aref.
Squaring attacks on mceliece public-key cryptosystems
using quasi-cyclic codes of even dimension.
Designs, Codes and Cryptography, 80, 06 2015.

[§ E. Prange.
The use of information sets in decoding cyclic codes.
IRE Transactions on Information Theory, 8(5):5-9, 1962.

38/39

N. Sendrier.
Decoding one out of many.
Cryptology ePrint Archive, Paper 2011/367, 2011.

39/39

	Public-Key Cryptography

