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1. Reed-Muller (RM) Codes

2. Encoding and Decoding

1The materials can be found in [1, Chapter 8]
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Reed-Muller (RM) Codes



Overiew

▶ introduced by Muller in 1954

▶ Reed shortly proposed a decoding algorithm with

error-correcting capability up to ⌊d−1
2 ⌋

▶ had been used to transmit the black and white Mariner images

(later replaced by Golay codes for transmitting color images)

▶ RM codes have a flavour of polarization, an idea adopted in

Polar codes that are used in the 5G standard
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Binary Reed-Muller Codes

Boolean functions

An m-variable Boolean function is a map from Fm
2 to F2 given by

f (x0, x1, · · · , xm−1) =
m−1∑
s=0

∑
0≤i1<i2··· ,<is≤m−1

ai1,i2,··· ,isxi1xi2 · · · xis

or by a truth table

[f (0), f (1), . . . , f (2m − 1)],

where i is a column vector of the binary representation of the

integer i , 0 ≤ i ≤ 2m − 1.

The algebraic degree of f is

deg(f ) = max{deg(xi1xi2 · · · xis ) | ai1,i2,··· ,is ̸= 0 ≤ s < m}
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Example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

x3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let f (x0, x1, x2, x3) = 1 + x0 + x2 + x0x1 + x1x2x3. The truth table

cf = (f (0), f (1), . . . , f (15)) = (1100110100111101).

and the algebraic degree of f is deg(x1x2x3) = 3.
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Definition

The binary r -th order Reed-Muller code of length n = 2m is:

RM(r ,m) = {cf = (f (0), f (1), . . . , f (2m − 1)) | deg(f ) ≤ r} .
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Example (m=4)

Generator Matrices

RM(0,m): row 1; RM(1,m): row 1-5; RM(2,m): row 1-11;

RM(3,m): row 1-15; RM(4,m): all 16 rows. 6 / 28



Properties of RM codes

The recursive relation:

RM(0,m) ⊂ RM(1,m) ⊂ RM(2,m) ⊂ · · · ⊂ RM(m,m)

For any Boolean function f (x0, . . . , xm−2, xm−1) with deg(f ) ≤ r ,

▶ f (x0, . . . , xm−1) = f1(x1, . . . , xm−2) + xm−1f2(x1, . . . , xm−2).

▶ If deg(f ) ≤ r , then deg(f1) ≤ r and deg(f2) ≤ r − 1.

▶ f (x0, . . . , xm−2, 0) = f1(x0, . . . , xm−2) and

f (x0, . . . , xm−2, 1) = f1(x0, . . . , xm−2) + f2(x0, . . . , xm−2)

Recursive Relation

RM(r ,m) = {(u, u+v) | u ∈ RM(r ,m−1), v ∈ RM(r−1,m−1)}
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Parameters

For the r -th order binary RM codes RM(r ,m), we have

▶ the dimension of RM(r,m) code: k =
(m
0

)
+
(m
1

)
+ · · ·+

(m
r

)
▶ the minimum distance d = 2m−r
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Proof on Dimension.

Each monomial xi1 . . . xit with 1 ≤ t ≤ r is a row in the generator

matrix G of RM(r ,m). Together with the constant (all-one row),

there are (
m

0

)
+

(
m

1

)
+ · · ·+

(
m

r

)
rows in G. This gives the dimension of RM(r ,m).
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Proof of Min. Distance.

▶ Recall that for the (u, u + v) construction C of codes C1, C2,

the minimum distance of C satisfies

d = min{2d1, d2}.

With the recursive relation,

RM(r ,m) = {(u, u+v) | u ∈ RM(r ,m−1), v ∈ RM(r−1,m−1)}

One has

d(RM(r ,m)) = min{2d(RM(r ,m−1)), d(RM(r−1,m−1))}.

Note that for any integer m′,

d(RM(m′,m′)) = 1 and d(RM(0,m′)) = 2m
′
.

By induction the result can be obtained.
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Dual of RM codes

The dual code of RM(r ,m) is RM(m − r − 1,m).

▶ Dimension.

r∑
i=0

(
m

i

)
+

m−(r+1)∑
j=0

(
m

j

)
=

r∑
i=0

(
m

i

)
+

m∑
i=r+1

(
m

i

)
= 2m

▶ Orthogonality. For any b ∈ {0, 1, . . . , 2m − 1},

cf ∗g (b) = 1 ⇐⇒ (f ∗g)(b) = f (b)g(b) = 1 ⇐⇒ cf (b) = cg (b) = 1.

Therefore, one has ⟨cf , cg ⟩ = wt(cf ∗g ) (mod 2). Because

deg(f ∗ g) ≤ m − 1, cf ∗g is a codeword of RM(m − 1,m), in

which all codewords have even weight. This implies

⟨cf , cg ⟩ = 0.
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Encoding and Decoding



Encoding

Recall that the dimension of RM(r ,m) is

k =
r∑

i=0

(
m

i

)
.

For any message a of length k, we can take each coordinate of a

as the coefficient for a monomial in the Boolean function f and

the truth table of f will be the corresponding codeword for a.
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Example. r = 1.

▶ k =
(m
0

)
+
(m
1

)
= m + 1

▶ the monomials are

1, x0, x1, . . . , xm−1

▶ for a message a = (a0, a1, . . . , am), the corresponding Boolean

functions is

f = a0 + a1x0 + a2x1 + · · ·+ amxm−1

▶ the codeword is

cf = (f (0), f (1), . . . , f (2m − 1)) = (1100110100111101).
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Decoding of RM codes

▶ there are many decoding approaches for RM codes

▶ we will take a look at one approach by majority strategy to

recover the Boolean function

f (x0, x1, · · · , xm−1) =
r∑

s=0

∑
0≤i1<i2··· ,<is≤m−1

ai1,i2,··· ,i1xi1xi2 · · · xis

▶ the decoding methods for RM(r ,m) are in general complex

▶ we start with the simpler case RM(1,m)

RM(1,m) = {cf | f = a0+a1x0+a2x1+· · ·+amxm−1, ai ∈ F2}.
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Decoding RM(1,m)

For a codeword in

RM(1,m) = {cf | f = a0 + a1x0 + a2x1 + · · ·+ amxm−1, ai ∈ F2},

there are 2m equations in a0, a1, . . . , am.

If there is some errors in a received word y = (y0, . . . , y2m−1).

One can determine the codeword based on the majority decoding

strategy.
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Example

Decode the RM(1, 3) code with majority strategy.

The generator matrix of RM(1, 3) is given by

0 1 2 3 4 5 6 7

g0 1 1 1 1 1 1 1 1

g1 0 0 0 0 1 1 1 1

g2 0 0 1 1 0 0 1 1

g3 0 1 0 1 0 1 0 1

The vector g0, g1, g2, g3 are the basis of the generator matrix. The

function of any codeword is given by

c = a0g0 + a1g1 + a2g2 + a3g3

This gives the codeword as

( a0, a0 + a3, a0 + a2, a0 + a2 + a3,

a0 + a1, a0 + a1 + a3, a0 + a1 + a2, a0 + a1 + a2 + a3).
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If no error occurs in received word

y = (y0, y1, y2, y3, y4, y5, y6, y7)

= (a0, a0 + a3, a0 + a2, a0 + a2 + a3,

a0 + a1, a0 + a1 + a3, a0 + a1 + a2, a0 + a1 + a2 + a3)

one has

a1 = y0 + y4 = y1 + y5 = y2 + y6 = y3 + y7

a2 = y0 + y2 = y1 + y3 = y4 + y6 = y5 + y7

a3 = y0 + y1 = y2 + y3 = y4 + y5 = y6 + y7

▶ If one error has occurred in y, then all the calculations above

are made, 3 of 4 values will agree for each ai , so the correct

valued will be obtained by majority decoding.

▶ Finally a0 can be determined by the majority of the

components of y+ a1g1 + a2g2 + a3g3
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Fast Decoding of the 1-st order Reed-Muller codes

First order RM codes can be efficiently decoded using a fast

Hadamard transform. This can be efficiently done in 3 steps:

1. Build the 2m-order Hadamard matrix.

2. Apply Binary Phase Shift Keying on the received word r .

3. Compute its Walsh coefficients.

The Hadamard matrix of order 2m is defined as

H2m = H2 ⊗ H2m−1 =

[
H2m−1 H2m−1

H2m−1 −H2m−1

]
with H2 =

[
1 1

1 −1

]
,

Actually this recursion helps achieve fast transform and drop the

complexity from O(2m × 2m) to O(m2m).
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Fast Decoding of the 1-st order Reed-Muller codes

Example for m = 3. The generator matrix for the RM(1, 3) code

is

G =


1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1


1

x1
x2
x3

and the 8-order Hadamard matrix is

H3 =



1 1 1 1 1 1 1 1

1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1

1 1 1 1 − − − −
1 − 1 − − 1 − 1

1 1 − − − − 1 1

1 − − 1 − 1 1 −


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Fast Decoding of the 1-st order Reed-Muller codes

Example for m = 3.

Binary Phase Shift Keying: we assign a phase to each bit ri of the

received word. For the binary case this is a map

F : {0, 1} → {−1, 1} as

F (ri ) = (−1)ri .

The vector w of its Walsh coefficients are computed by w = rH8.
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Fast Decoding first order Reed-Muller codes

Let’s consider r is a valid codeword associated to the polynomial

x1. Then r = (0, 0, 0, 0, 1, 1, 1, 1).

Its BPSK representation is (1, 1, 1, 1,−1,−1,−1,−1).



1

1

1

1

−1

−1

−1

−1



⊤ 

1 1 1 1 1 1 1 1

1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1

1 1 1 1 − − − −
1 − 1 − − 1 − 1

1 1 − − − − 1 1

1 − − 1 − 1 1 −


=



0

0

0

0

8

0

0

0



⊤

21 / 28



Fast Decoding first order Reed-Muller codes

Let’s consider r is a valid codeword associated to the polynomial

x1. Then r = (0, 0, 0, 0, 1, 1, 1, 1).

Its BPSK representation is (1, 1, 1, 1,−1,−1,−1,−1).



1

1

1

1

−1

−1

−1

−1



⊤ 

1 1 1 1 1 1 1 1

1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1

1 1 1 1 − − − −
1 − 1 − − 1 − 1

1 1 − − − − 1 1

1 − − 1 − 1 1 −


=



0

0

0

0

8
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⊤
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Fast Decoding of the 1-st order Reed-Muller codes

Let’s consider one error in r = (0, 0, 0, 0, 1, 1, 1, 0).

Its BPSK representation is (1, 1, 1, 1,−1,−1,−1, 1).
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1

1

1

1

−1

−1

−1

1



⊤ 

1 1 1 1 1 1 1 1

1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1

1 1 1 1 − − − −
1 − 1 − − 1 − 1

1 1 − − − − 1 1

1 − − 1 − 1 1 −


=



1

−1

−1

1

7

1

1

−1



⊤

This strategy is again the majority decoding.
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Decoding of RM(r ,m)-Overview

Let f ∈ RM(r ,m) and a codeword cf = (f (x))x∈Fm
2
is transmitted.

Suppose there are at most
⌊
2m−r−1

2

⌋
errors that occurs in the

received word cg .

▶ First, determine the coefficients of highest degree cf in f .

▶ It is possible to find 2m−r equations to determine each of these

coefficients by majority decoding.

▶ Next, determine the coefficients of next highest degree r − 1
in f .

▶ It is possible to find 2m−r+1 equations to determine each of

these coefficients by majority decoding.

▶ Continue this way to find all coefficients of f .
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Finding degree-r terms in f ∈ RM(r ,m)

f (x0, x1, · · · , xm−1) =
r∑

s=0

∑
0≤i1<i2··· ,<is≤m−1

ai1,i2,··· ,i1xi1xi2 · · · xis

For the term am−r ,m−r+1,··· ,m−1xm−rxm−r+1 · · · xm−1, its

coefficient can be determined from the following lemma.

Lemma

There are 2m−r equations to determine am−r ,m−r+1,··· ,m−1 given

by

am−r ,m−r+1,··· ,m−1 = cf · c(x0+u0)(x1+u1)···(xm−r−1+um−r−1)

for u0, u1, · · · , um−r−1 ∈ {0, 1}.
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Proof. Given u = (u0, · · · , um−r−1) ∈ GF (2)r , define

gu(x) = (x0 + u0) (x1 + u1) · · · (xr−1 + um−r−1) .

Write f as f (x) = am−r ,m−r+1,··· ,m−1xm−rxm−r+1 · · · xm−1 + f1(x)

and consider

f (x)gu(x) = am−r ,m−r+1,··· ,m−1xm−rxm−r+1 · · · xm−1gu(x) + f1(x)gu(x)

where deg(f1gu) < m. Observe that

gu(x)xm−rxm−r+1 · · · xm−1 = 1 iff x = (u0+1, . . . , um−r−1+1, 1, . . . , 1)

and wt(f1gu) ≡ 0 mod 2 since deg(f1gu) < m. This implies

am−r ,m−r+1,··· ,m−1 ≡ wt(fgu) mod 2 = cf · cgu mod 2
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Let f ∈ RM(r ,m) be transmitted and let cf be its characteristic

vector. Suppose at most t = 2m−r−1 − 1 =
⌊
d−1
2

⌋
errors and we

receive r = cf + e, where e is the error pattern of weight at most t.

Let

gu(x) = (x0 + u0) · · · (xm−r−1 + um−r−1) , u ∈ {0, 1}r .

We will find 2m−r equations in am−r ,m−r+1,··· ,m−1.

Step 1: Compute r · gu for u0, · · · , um−r−1 ∈ {0, 1}. If no errors

these 2m−r checks are all equal to am−r ,m−r+1,··· ,m−1. The errors

means we only get an estimate of am−r ,m−r+1,··· ,m−1.

Step 2: Compute am−r ,m−r+1,··· ,m−1 as majority of the values of

the 2m−r parity checks.
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Remark

The parity checks gu(x) checks disjoint positions. (Because

gu(x) checks positions where gu(x) = 1 and these positions are

disjoint for different values of u).

Each error therefore changes only one parity-check. Since there

are 2m−r parity-checks a majority will give the value

am−r ,m−r+1,··· ,m−1 since there are at most
⌊
2m−r−1

2

⌋
errors.
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