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1. Reed-Muller (RM) Codes

2. Encoding and Decoding

!The materials can be found in [1, Chapter 8]
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Reed-Muller (RM) Codes



Overiew

» introduced by Muller in 1954

P> Reed shortly proposed a decoding algorithm with
error-correcting capability up to L%J

P had been used to transmit the black and white Mariner images
(later replaced by Golay codes for transmitting color images)

» RM codes have a flavour of polarization, an idea adopted in
Polar codes that are used in the 5G standard
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Binary Reed-Muller Codes

Boolean functions
An m-variable Boolean function is a map from F7’ to [F» given by

m—1
f(x0, X1, Xm—1) = E E : i, g, ,is Xy Xip * * * Xig
s=0 0<ii<ip+ ,<is<m—1
or by a truth table

[f(0),f(1),...,f(2™ —1)],

where i is a column vector of the binary representation of the
integer i, 0 </ <2™—1.

The algebraic degree of f is

deg(f) = max{deg(xi, i, - - - Xi.) | @iy ip,--is # 0 < s < m}
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Example.
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Let f(xo,x1,Xx2,%3) = 1 + xo0 + x2 + xox1 + x1x2x3. The truth table

cr = (F(0), F(1),...,£(15)) = (1100110100111101).

and the algebraic degree of f is deg(x1x2x3) = 3.
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Definition
The binary r-th order Reed-Muller code of length n = 2" is:

RM(r,m) = {cr = (f(0),f(1),...,f(2™ —1)) | deg(f) < r}.
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Example (m=4)
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XpX3
X1 X2
X1X3
X2 X3

RM(0, m): row 1; RM(1, m): row 1-5; RM(2, m): row 1-11;

RM(3, m): row 1-15; RM(4, m): all 16 rows.

Generator Matrices

XpX1X2X3



Properties of RM codes

The recursive relation:

RM(0,m) C RM(1, m) C RM(2, m) C --- C RM(m, m)

For any Boolean function f(xp, ..., Xm—2, Xm—1) with deg(f) < r,

» (X0, Xm—1) = (X1, ..y, Xm=2) + Xm—1F2(X1, . . ., Xm—2).
» If deg(f) < r, then deg(f;) < r and deg(fz) < r —1.
» f(x0,--.yXm—2,0) = fi(x0,...,Xm—2) and

F(x0,- s Xm—2,1) = (X0, s Xm—2) + (X0, - - - , Xm—2)
Recursive Relation
RM(r,m) = {(u,u+v) | ue RM(r,m—1),v € RM(r—1,m—1)}
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Parameters
For the r-th order binary RM codes RM(r, m), we have

» the dimension of RM(r,m) code: k = (’6’) + (T) 44 (’")

r

» the minimum distance d = 2m"
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Proof on Dimension.

Each monomial x;, ...x;, with 1 <t < ris a row in the generator
matrix G of RM(r, m). Together with the constant (all-one row),

(8)+ (D) (7)

rows in G. This gives the dimension of RM(r, m).

there are
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Proof of Min. Distance.

» Recall that for the (u, u + v) construction C of codes C;, G,
the minimum distance of C satisfies

d = min{2dy, db}.
With the recursive relation,
RM(r,m) = {(u,u+v) | ue RM(r,m—1),v € RM(r—1, m—1)}
One has
d(RM(r,m)) = min{2d(RM(r,m—1)),d(RM(r—1,m—1))}.
Note that for any integer n?,
d(RM(m', m')) = 1 and d(RM(0, m')) = 2™

By induction the result can be obtained.
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Dual of RM codes
The dual code of RM(r, m) is RM(m —r — 1, m).

» Dimension.

L Im m—(r+1) - o 0
205 ()50 £ 0

» Orthogonality. For any b € {0,1,...,2™ — 1},
Crig(b) = 1 < (fxg)(b) = f(b)g(b) =1 < cr(b) = cg(b) = 1.

Therefore, one has (cr, ¢;) = wt(crig) (mod 2). Because
deg(f xg) < m—1, cf.g is a codeword of RM(m —1,m), in
which all codewords have even weight. This implies

<Cf7 Cg> =0.
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Encoding and Decoding




Encoding

Recall that the dimension of RM(r, m) is
" (m
k = .
% (%)

For any message a of length k, we can take each coordinate of a
as the coefficient for a monomial in the Boolean function f and
the truth table of f will be the corresponding codeword for a.
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Example. r = 1.

> k= (3 + () =m+1

» the monomials are
17X07X17 - Xm—1

» for a message a = (ao, a1, ...,am), the corresponding Boolean
functions is

f=ap+aixo + axxy + -+ amXm—_1
» the codeword is

cr = (£(0), F(1),...,f(2™ —1)) = (1100110100111101).
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Decoding of RM codes

» there are many decoding approaches for RM codes

> we will take a look at one approach by majority strategy to
recover the Boolean function

.
f (XO’Xl’ o ’Xm*l) = E : E : Qiyig, - iy Xiy Xip * + * Xig

s=0 0<ii <ip-+ ,<is<m—1

» the decoding methods for RM(r, m) are in general complex

» we start with the simpler case RM(1, m)

RM(]_, m) = {Cf ’ f = aptaixo+asxi+---+amxXm_1, a; € Fg}
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Decoding RM(1, m)

For a codeword in
RM(I, m) = {Cf ‘ f=ag+ aixo+ acxy1 + -+ amXm—1, 3; € F2},

there are 2 equations in ag, a1, ..., am.
If there is some errors in a received word y = (yo, ..., yom_1).

One can determine the codeword based on the majority decoding
strategy.
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Example

Decode the RM(1,3) code with majority strategy.

The generator matrix of RM(1,3) is given by
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The vector go, g1, 2, g3 are the basis of the generator matrix. The

function of any codeword is given by

This gives the codeword as

(

C = apg8o + 2181 + a282 + asgs

ap, do + as, ap + a2, ap + a2 + as,

ap+ai,a+ a1 +as3,a0+ a1 + a2, a0 + a1 + a2 + a3).
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If no error occurs in received word

y :(YO7)/17}/27Y3,Y47YS7Y67)/7)
= (ap, ap + a3, a0 + a2, ap + a> + as,
ag+ai,a+ a1+ as,a0+ a1 + a2, a0 + a1 + a2 + a3)

one has

a=Ytya=y1+ys=y2+¥e=y3+tyr
R=YtyY2=y1+tyV3=Ya+Ye=Yys+ )7
B=Yoty1=y2+y3=Ya+Yys =Yoo+ )7

» If one error has occurred in y, then all the calculations above
are made, 3 of 4 values will agree for each a;, so the correct
valued will be obtained by majority decoding.

» Finally ag can be determined by the majority of the
components of y + a1 81 + axg» + a383
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Fast Decoding of the 1-st order Reed-Muller codes

First order RM codes can be efficiently decoded using a fast
Hadamard transform. This can be efficiently done in 3 steps:

1. Build the 2™-order Hadamard matrix.
2. Apply Binary Phase Shift Keying on the received word r.
3. Compute its Walsh coefficients.
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Fast Decoding of the 1-st order Reed-Muller codes

First order RM codes can be efficiently decoded using a fast
Hadamard transform. This can be efficiently done in 3 steps:

1. Build the 2™-order Hadamard matrix.

2. Apply Binary Phase Shift Keying on the received word r.

1
1|’

3. Compute its Walsh coefficients.

The Hadamard matrix of order 2™ is defined as

H2m71 Hszl

Hom = Hy ® Hym—1 =
2 2 2 ' H2m—1 —H2m71

with H, =
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Fast Decoding of the 1-st order Reed-Muller codes

First order RM codes can be efficiently decoded using a fast
Hadamard transform. This can be efficiently done in 3 steps:

1. Build the 2™-order Hadamard matrix.

2. Apply Binary Phase Shift Keying on the received word r.

3. Compute its Walsh coefficients.

The Hadamard matrix of order 2™ is defined as

H2m71 Hszl

Hom = Hy ® Hym—1 =
2 2 2 ' H2m—1 —H2m71

with H, =

1 1
1 -1’

Actually this recursion helps achieve fast transform and drop the
complexity from O(2™ x 2™) to O(m2™).
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Fast Decoding of the 1-st order Reed-Muller codes

Example for m = 3. The generator matrix for the RM(1, 3) code

IS

G =
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Fast Decoding of the 1-st order Reed-Muller codes

Example for m = 3. The generator matrix for the RM(1, 3) code

IS

1 111 1 111 1
c_|0000 111 1fx
o001 1001 1| x
01 01 01 0 1| x3
and the 8-order Hadamard matrix is
(11 1 1 1 1 1 1]
1 -1 - 1 - 1 -
1 1 - - 1 1 - -
1 - -1 1 - - 1
H; =
1 11 1 - - - -
1 - 1 - — 1 - 1
1 1 - - - — 1 1
1 - -1 - 1 1 -
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Fast Decoding of the 1-st order Reed-Muller codes

Example for m = 3.

Binary Phase Shift Keying: we assign a phase to each bit r; of the
received word. For the binary case this is a map
F:{0,1} - {-1,1} as

Fn) = (~1)"-
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Fast Decoding of the 1-st order Reed-Muller codes

Example for m = 3.

Binary Phase Shift Keying: we assign a phase to each bit r; of the
received word. For the binary case this is a map
F:{0,1} - {-1,1} as

Fm) = (~1)"-

The vector w of its Walsh coefficients are computed by w = rHg.
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Fast Decoding first order Reed-Muller codes
Let's consider r is a valid codeword associated to the polynomial

x1. Thenr = (0,0,0,0,1,1,1,1).
Its BPSK representation is (1,1,1,1,—-1,—-1,—1,—1).
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Fast Decoding first order Reed-Muller codes

Let's consider r is a valid codeword associated to the polynomial
xi. Thenr=(0,0,0,0,1,1,1,1).

Its BPSK representation is (1,1,1,1,-1,—1, -1, —1).

1]t 1101101 1 1] Jol'
1 1 — 1 — 1 — 1 — 0
1 11 — — 1 1 — — 0
1 L = = 1 1 = = 1| |@
~1 1111 — — — —| |8
-1 jr - 1 - — 1 - 1 0
-1 11 - — — - 1 0
-1 1 - -1 - 1 - [0
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Fast Decoding of the 1-st order Reed-Muller codes

Let's consider one error in r = (0,0,0,0,1,1,1,0).

Its BPSK representation is (1,1,1,1,—-1,—-1,—1,1).
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Fast Decoding of the 1-st order Reed-Muller codes

Let's consider one error in r = (0,0,0,0,1,1,1,0).

Its BPSK representation is (1,1,1,1,—-1,—-1,—1,1).

1]t 101010101 1] [11"
1 1 - _ 1 - - 1
1 11 - — 1 1 — — 1
1 T B N
-1 1111 - — — —| |7
S I T T 1
T I T T 1 1
R e | — =
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Fast Decoding of the 1-st order Reed-Muller codes

Let's consider one error in r = (0,0,0,0,1,1,1,0).

Its BPSK representation is (1,1,1,1,—-1,—-1,—1,1).

1]t 101010101 1] [11"
1] |1 -1 -1 - 1 - 1
1 |11 - - 11 - - 1
1| |1 - - 11 - - 1| |1
-1 1111 - — — —| |7
B I T 1
T I T 1 1
1] - -1 -1 -1 |

This strategy is again the majority decoding.
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Decoding of RM(r, m)-Overview

Let f € RM(r,m) and a codeword cf = (f(x))xery is transmitted.
am—r_i
2

Suppose there are at most { J errors that occurs in the

received word ¢,.

> First, determine the coefficients of highest degree c¢ in f.

» |t is possible to find 2™~ " equations to determine each of these
coefficients by majority decoding.

> Next, determine the coefficients of next highest degree r — 1
in f.

» It is possible to find 2"~ "*1 equations to determine each of
these coefficients by majority decoding.

» Continue this way to find all coefficients of f.
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Finding degree-r terms in f € RM(r, m)

r
f (X07X17 U 7Xm_1) = E § afl,iz,--- Lip Xip Xip + + + Xig

s=00<i1<ip-++ ,<is<m—1

For the term apm—r m—r+1,-- m—1Xm—rXm—r+1 * * * Xm—1, its
coefficient can be determined from the following lemma.

Lemma
There are 2™~" equations to determine am—_r m—r41,...,m—1 given
by

amir7m7r+17'"7m71 = Cf ’ C(X0+uO)(Xl+u1)"'(Xm—f—1+Um—’—1)
for ug, u1, -+, Um—r—1 € {0,1}.
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Proof. Given u = (ug,--- ,Um—r—1) € GF(2)", define
gu(x) = (xo 4+ uo) (x1 + u1) -+ (Xr—1 + Um—r—1) -

Write f as f(x) = am—r,m—r+1, ,m—1Xm—rXm—r+1* * * Xm—1 + f1(x)
and consider

f(x)gu(X) = am—r,m—r+1, ,m—1Xm—rXm—r+1 * * - Xm—18u(Xx) + f(x)gu(x)
where deg(fig,) < m. Observe that

8u(X)Xm—rXm—r+1 -+ Xm—1 = 1iff x = (uo+1,..., Um—r—1+1,1,...,1)
and wt(f1g,) = 0 mod 2 since deg(fig,) < m. This implies

am—r.m—r+1,--,m—1 = wt(fgy) mod 2 = ¢f - ¢z, mod 2
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Let f € RM(r, m) be transmitted and let ¢ be its characteristic

vector. Suppose at most t =271 — 1 = L%J errors and we

receive r = ¢r + e, where e is the error pattern of weight at most t.

Let

gu(X) - (XO + UO) T (Xm—r—l + Um—r—l) yue {07 1}r

We will find 2™~" equations in am—r m—r41,...,m—1-

Step 1: Compute r - g, for ug, -+, um—r—1 € {0,1}. If no errors
these 2" checks are all equal to am—r,m—r+1,..,m—1. The errors
means we only get an estimate of am—r m—r41,... . m—1-

Step 2: Compute am—r m—r+1,...,m—1 as majority of the values of
the 2™~ parity checks.
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Remark
The parity checks g,(x) checks disjoint positions. (Because
gu(x) checks positions where g,(x) = 1 and these positions are

disjoint for different values of u).

Each error therefore changes only one parity-check. Since there
are 2" parity-checks a majority will give the value
am—r,m—r+1,-,m—1 since there are at most [%J errors.
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