# The Roadmap from Polynomials to Quantum-safe Cryptosystems

A perspective from discrete mathematics (Part 2/4)

Chunlei Li (University of Bergen, Norway)

INCP2-2024/10213 on

Mathematical Theory of Data Transmission and Data Encryption

Oct. 6-10, 2025, Tromsø

Fall school on Geometry in Cryptography and Communication

### **Outline**

- 1. Representations of Reed-Solomon codes
- 2. Encoding of RS codes
- 3. Decoding of RS codes

# Representations of Reed-Solomon

codes

# **Background**

- ▶ introduced by Irving Stoy Reed and Gustave Solomon in 1960
- probably the most widely used error-correcting codes til now
- ► applications in storage
  - ► MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes
  - ► RAID (Redundant Array of Inexpensive Disks) 6
- applications in communications
  - ► DSL and WiMAX,
  - satellite communications, DVB and ATSC
  - ► mobile communications
- variants of the generalized RS codes are used in post-quantum cryptography

# Representations of RS codes

- ► represented as BCH codes
- represented by low-degree polynomials

# **Zeros of Cyclic Codes**

- ► For a cyclic code C of length n over  $\mathbb{F}_q$ , its generator polynomials  $g(x)|x^n-1$ .
- ightharpoonup g(x) can be given by

$$g(x) = m_{i_1}(x) \cdots m_{i_t}(x) = \prod_{j \in C_{i_1}} (x - \xi_n^j) \cdots \prod_{j \in C_{i_t}} (x - \xi_n^j)$$

where  $\xi$  is a primitive *n*-th root of unity

▶ Instead of defining a cyclic code  $\mathcal{C}$  from by its generator polynomial g(x), one can also define the code  $\mathcal{C}$  by the set of all zeros of g(x)

# **Complete Defining Set**

- ▶ Let C be a cyclic code of length n over  $\mathbb{F}_q$  with a generator polynomial g(x)
- ▶ Let  $\alpha = \xi_n$  be a primitive *n*-th root of unity in  $GF(q^r)$

The **complete defining set** of  $\mathcal C$  is given by

$$Z(\mathcal{C}) = \{i \in \mathbb{Z}_n : g(\alpha^i) = 0 \text{ for the generator poly. } g(x) \text{ of } \mathcal{C}\}$$

For a cyclic code C over  $\mathbb{F}_q$  of length n, the relation between its generator polymial and its defining set is given by

$$g(x) = \prod_{i \in Z(C)} (x - \alpha^i).$$

- ▶ The complete defining set is a union of disjoint cyclotomic cosets, i.e,,  $Z(C) = C_{i_1} \cup \cdots \cup C_{i_t}$
- ▶ **NB**: given a cyclic code C, its (complete) defining set depends on the choice of  $\alpha$
- ▶ The dimension of C is n deg(g) = n |Z(C)|

For a cyclic code C over  $\mathbb{F}_q$  of length n, the relation between its generator polymial and its defining set is given by

$$g(x) = \prod_{i \in Z(C)} (x - \alpha^i).$$

- ▶ The complete defining set is a union of disjoint cyclotomic cosets, i.e,,  $Z(C) = C_{i_1} \cup \cdots \cup C_{i_t}$
- ▶ **NB**: given a cyclic code C, its (complete) defining set depends on the choice of  $\alpha$
- ▶ The dimension of C is n deg(g) = n |Z(C)|

For a cyclic code C over  $\mathbb{F}_q$  of length n, the relation between its generator polymial and its defining set is given by

$$g(x) = \prod_{i \in Z(C)} (x - \alpha^i).$$

- ▶ The complete defining set is a union of disjoint cyclotomic cosets, i.e,,  $Z(C) = C_{i_1} \cup \cdots \cup C_{i_t}$
- ▶ **NB**: given a cyclic code C, its (complete) defining set depends on the choice of  $\alpha$
- ▶ The dimension of C is n deg(g) = n |Z(C)|

For a cyclic code C over  $\mathbb{F}_q$  of length n, the relation between its generator polymial and its defining set is given by

$$g(x) = \prod_{i \in Z(C)} (x - \alpha^i).$$

- ▶ The complete defining set is a union of disjoint cyclotomic cosets, i.e,,  $Z(C) = C_{i_1} \cup \cdots \cup C_{i_t}$
- ▶ **NB**: given a cyclic code C, its (complete) defining set depends on the choice of  $\alpha$
- ▶ The dimension of C is n deg(g) = n |Z(C)|

For a cyclic code C over  $\mathbb{F}_q$  of length n, the relation between its generator polymial and its defining set is given by

$$g(x) = \prod_{i \in Z(C)} (x - \alpha^i).$$

- ▶ The complete defining set is a union of disjoint cyclotomic cosets, i.e,,  $Z(C) = C_{i_1} \cup \cdots \cup C_{i_t}$
- ▶ **NB**: given a cyclic code C, its (complete) defining set depends on the choice of  $\alpha$
- ▶ The dimension of C is n deg(g) = n |Z(C)|

## **Example**

Consider the binary cyclic code C of length 7 with  $Z(C) = \{1, 2, 4\}$ .

Take  $\alpha$  as the root of  $f(x) = x^3 + x + 1$ .

Then  $g(x) = (x - \alpha)(x - \alpha^2)(x - \alpha^4) = x^3 + x + 1$  is the generator polynomial of C.

 ${\cal C}$  is thus a binary [7,4] code (with min. Hamming weight 3)

## Minimum Distance of Cyclic Codes

- ► Computing the true minimum distance of a cyclic code is a hard problem
- ► The BCH bound is a lower bound for the minimum distance
- ► Although the BCH bound is tight in many cases, it is not always the true minimum distance

# The Bose-Chaudhuri-Hocquenghem (BCH) bound

Let  $\mathcal C$  be a cyclic code such that its **complete defining set**  $Z(\mathcal C)$  has

$$\delta-1$$
 consective elements  $b, b+1, \ldots, b+\delta-2$ ,

then  $\mathcal{C}$  has its minimum distance

$$d(C) \geq \delta$$
.

### **BCH** codes

A cyclic code of length n over  $\mathbb{F}_q$  with (complete) defining set

$$\{b, b+1, \cdots, b+\delta-2\}$$

is called a BCH code with designed minumum distance  $\delta$ . Here the generator polynomial is given by

$$g(x) = \text{LeastCommonMultiple}(m_b(x), m_{b+1}(x), \cdots, m_{b+\delta-2}(x)),$$

where  $m_i(x)$  is the minimal polynomial of  $\alpha^i$  over  $\mathbb{F}_q$ .

The BCH code

- ightharpoonup is called narrow sense if b=1; and
- ▶ is called primitive if  $n = q^m 1$  for certain integer m.

### BCH view of RS codes

Let  $\alpha$  be a primitive element of  $\mathbb{F}_q$  and b be an integer. For two positive integers  $n \leq q$  and k < n, define a polynomial

$$g(x) = (x - \alpha^b)(x - \alpha^{b+1}) \cdots (x - \alpha^{b+n-k-1}).$$

Then the RS code over  $\mathbb{F}_q$  of length n is defined as the BCH code with g(x) as its generator polynomial.

For simplicity, we will take b = 1.

#### Parameters of RS codes

- ▶ the code length  $n \le q$ , and in practice is chosen as q-1
- ▶ the minimum distance d = n k + 1
  - ▶ the BCH bound gives  $d \ge n k + 1$
  - ▶ the Singleton bound gives  $d \le n k + 1$

# Polynomial view of RS codes

Let k be a positive integer. Define a set of polynomials over  $\mathbb{F}_q$  as follows

$$\mathcal{P}_k = \{ f_0 + f_1 x + \dots + f_{k-1} x^{k-1} : f_i \in \mathbb{F}_q \}$$

Let  $a_0, \ldots, a_{n-1}$  be n distinct elements in  $\mathbb{F}_q$ . The (original) RS code is defined by

$$C = \{(f(a_0), \ldots, f(a_{n-1})) : f \in P_k\}.$$

#### Parameters of RS codes

- ▶ the code length  $n \le q$ , and in practice is chosen as q-1
- ▶ the minimum distance d = n k + 1
  - ▶ the difference of any two polynomials has degree less than k, so it has at most k-1 zeros, which implies it has at least n-k+1 nonzeros when evaluating at elements  $\alpha_1,\ldots,\alpha_n$ . This implies  $d \geq n-k+1$
  - ▶ the Singleton bound gives  $d \le n k + 1$

# **Encoding of RS codes**

### **BCH** view

$$m(x) = \sum_{i=0}^{k-1} m_i x^i \longrightarrow c(x) = \sum_{i=0}^{n-1} c_i x^i$$

A codeword is a polynomial of degree < n.

With the generator polynomial  $g(x) = \prod_{i=1}^{n-k} (x - \alpha^i)$ , there are two encoding methods for cyclic RS codes:

- 1. **normal encoding**: c(x) = g(x)m(x)
- 2. **systematic encoding**:  $c(x) = x^{n-k}m(x) r(x)$  where

$$r(x) \equiv x^{n-k} m(x) \mod g(x)$$

# Polynomial/Sequence view

$$(m_0,\ldots,m_{k-1})\longrightarrow (c_0,\ldots,c_{n-1})$$

A codeword is a sequence of the evaluations of a polynomial at different elements  $a_j$ 's in  $\mathbb{F}_q$ .

### 1. normal encoding:

- $m(x) = m_0 + m_1 x + \cdots + m_{k-1} x^{k-1}$
- ▶ calculate  $c_j = m(a_j)$  for  $0 \le j < n$

### 2. systematic encoding

- ▶ use Lagrange interpolation to derive a polynomial p(x) such that  $p(a_i) = m_i$  for j = 0, 1, ..., k 1
- ▶ calculate  $c_j = p(a_j)$  for  $k \le j < n$

# Decoding of RS codes

# **Summary of Decoding BCH codes**

There are many algorithms for decoding RS codes in the view of BCH codes. The most common ones follow this general outline:

- 1. Calculate the syndromes s for the received vector
- 2. Determine the error locator polynomial  $\sigma(x)$  from the key equation
- 3. Determine the error locations  $i_1, \cdots, i_t$  from the roots of the error location polynomial
- 4. Determine the error values  $e_{i_1}, \dots, e_{i_t}$  at those error locations
- 5. Correct the errors

During some of these steps, the decoding algorithm may determine that the received vector has too many errors, yeilding a decoding failure

# **Syndrome Calculation**

Let C be a BCH code of length n with defining set

$$I = \{b, b+1, \cdots, b+\delta-2\}.$$

Regard a received word r as  $r(x) = \sum_i r_i x^i = c(x) + e(x)$ , where e(x) is the error polynomial

Calculate the syndrome  $s_j = r(\alpha^j)$  for  $j \in I$ .

- ▶ If  $s_i = 0$  for all  $j \in I$ , then r(x) = c(x) and there's no error;
- ▶ IF  $s_j \neq 0$  for certain  $j \in I$ , then  $e(x) \neq 0$  and we need to determine the error polynomial e(x)

# **Determine Error-Locator Polynomial**

Suppose the error polynomial e(x) has t errors, namely,

$$e(x) = e_{i_1}x^{i_1} + \cdots + e_{i_t}x^{i_t}$$

with  $e_{i_r} \neq 0$  for  $r = 1, \dots, t$ .

Let  $z_r = \alpha^{i_r}$  and define the error-locator polynomial as

$$\sigma(x) = \prod_{r=1}^{t} (1 - z_r x) = 1 + \sigma_1 x + \cdots + \sigma_t x^t$$

For  $j \in I = \{b, b + 1, \dots, b + \delta - 2\}$ ,

$$s_j = r(\alpha^j) = e(\alpha^j) = \sum_{r=1}^t e_{i_r} z_r^j$$

From the definition of  $\sigma(x)$ , one has

$$0 = e_{i_r} z_r^{i+t} \sigma(1/z_r) = (e_{i_r} z_r^{i+t} + \sigma_1 e_{i_r} z_r^{i+t-1} + \dots + \sigma_t e_{i_r} z_r^i)$$

for  $r = 1, \dots, t$ .

Therefore, for integers  $i \ge 0$ ,

$$s_{i+t} + \sigma_1 s_{i+t-1} + \cdots + \sigma_t s_i = 0.$$

The key equations have their origin from Newton's identities.

Consider a binary narrow-sense BCH code and verify the key equation, where  $s(x) = s_1 + s_2x + \cdots + s_{2t}x^{2t-1}$ ,

$$s(x)\sigma(x) \equiv \Omega(x) \mod (x^{2t})$$

where  $\Omega(x)$  has degree at most t.

Consider t consective equations

$$s_{b+t} = \sigma_1 s_{b+t-1} + \dots + \sigma_t s_b 
 s_{b+t+1} = \sigma_1 s_{b+t} + \dots + \sigma_t s_{b+1} 
 \vdots 
 s_{b+2t-1} = \sigma_1 s_{b+2t-2} + \dots + \sigma_t s_{b+t-1}$$

This is the same as

$$\begin{pmatrix} s_{b+t-1} & s_{b+t-2} & \cdots & s_b \\ s_{b+t} & s_{b+t-1} & \cdots & s_{b+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{b+2t-1} & s_{b+2t-2} & \cdots & s_{b+t-1} \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_t \end{pmatrix} = \begin{pmatrix} s_{b+t} \\ s_{b+t+1} \\ \vdots \\ s_{b+2t-1} \end{pmatrix}$$

Solving the above equation gives the coefficients  $\sigma_1, \dots, \sigma_t$ .

The error-locator polynomial  $\sigma(x) = 1 + \sum_{i=1}^t \sigma_t x^i$  is thus obtained

## **Determine error-positions**

From the definition of  $z_r = \alpha^{i_r}$  and

$$\sigma(x) = 1 + \sigma_1 x + \cdots + \sigma_t x^t = \prod_{r=1}^t (1 - z_r x).$$

In order to determine  $\{i_1, \dots, i_t\}$ , we need to use

- ▶ brute-force search on the roots  $\{z_1, \dots, z_t\}$  of  $\sigma(x)$
- ▶ Chien's search on the roots  $\{z_1, \dots, z_t\}$  of  $\sigma(x)$

This gives the error positions in the error polynomial e(x)

### **Determine error values**

The error values  $e_{i_1}, \cdots, e_{i_t}$  can be determined by solving the equations

$$s_j = e(\alpha^j) = e_{i_1}z_1^j + \cdots + e_{i_t}z_t^j$$

for 
$$j \in I = \{b, b + 1, \dots, b + \delta - 2\}.$$

An more efficient method is to use Forney's algorithm:

- ▶ calculate error-evaluation poly.  $\Omega(x) = S(x)\sigma(x)$  (mod  $x^{\delta-1}$ ), where  $S(x) = s_b + s_{b+1}x + \cdots + s_{b+\delta-2}x^{\delta-2}$
- $\blacktriangleright$  the error value at position  $i_r$  is given by

$$e_{i_r} = \frac{\alpha^{i_k} \Omega(\alpha^{-i_k})}{\alpha^{bi_k} \sigma'(\alpha^{-i_k})}$$

# Overview of Decoding RS codes

So far RS codes are the most attractive algebraic codes in applications in the sense that

- ▶ there is no restrictions on the parameters n, k, d of RS codes over  $\mathbb{F}_q$  except that  $n \leq q$
- ► the nice algebraic structure of RS codes allows for several **polynomial-time** decoding algorithms
  - Peterson-Gorenstein-Zierler alg., Berlekamp-Massey alg., Welch-Berlekamp alg., Sugiyama alg., Gao alg.

# Decoding of RS codes in polynomial representation

Given the known parameters of a RS code, including

- ▶ the finite field  $\mathbb{F}_q$
- ightharpoonup parameters [n, k]
- ▶ the evaluation points  $a_0, \ldots, a_{n-1}$

and a received word

$$\mathbf{r}=(r_0,\ldots,r_{n-1}),$$

find the polynomial f(x) of degree < k that gives a codeword

$$\mathbf{c} = (f(a_0), \dots, f(a_{n-1}))$$

that is closest to r.

# Berlekamp-Welch Decoding

- ▶ US patent (link) by Berlekamp and Welch in 1983
- created for the original view of RS codes and can be extended for GRS codes

# **Decoding Strategy**

Suppose the received word  $\mathbf{r}$  contains t errors at positions  $i_1, \ldots, i_t$  and set a monic **error polynomial** E(x) with  $E(a_{i_r}) = 0$  for  $r = 1, \ldots, t$ . Then,

$$(f(a_i) - b_i)E(a_i) = 0$$
 for  $b_i = r_i, i = 0, 1, ..., n - 1$ .

▶ Define Q(x) = f(x)E(x). Then  $\deg(Q) \le k - 1 + t$  and  $Q(a_i) = b_i E(a_i) \text{ for } 0 \le i < n.$ 

▶ Take coeff. of Q(x) and E(x) as variables, one has k + t + t variables in n equations. Solve these equation to obtain E(x) and Q(x) and then f(x) = Q(x)/E(x)

# **Decoding Strategy**

Suppose the received word  $\mathbf{r}$  contains t errors at positions  $i_1, \ldots, i_t$  and set a monic **error polynomial** E(x) with  $E(a_{i_r}) = 0$  for  $r = 1, \ldots, t$ . Then,

$$(f(a_i) - b_i)E(a_i) = 0$$
 for  $b_i = r_i, i = 0, 1, ..., n - 1$ .

▶ Define Q(x) = f(x)E(x). Then  $\deg(Q) \le k - 1 + t$  and  $Q(a_i) = b_i E(a_i)$  for 0 < i < n.

▶ Take coeff. of Q(x) and E(x) as variables, one has k + t + t variables in n equations. Solve these equation to obtain E(x) and Q(x) and then f(x) = Q(x)/E(x)

# **Decoding Strategy**

Suppose the received word  $\mathbf{r}$  contains t errors at positions  $i_1, \ldots, i_t$  and set a monic **error polynomial** E(x) with  $E(a_{i_r}) = 0$  for  $r = 1, \ldots, t$ . Then,

$$(f(a_i) - b_i)E(a_i) = 0$$
 for  $b_i = r_i, i = 0, 1, ..., n - 1$ .

▶ Define Q(x) = f(x)E(x). Then  $\deg(Q) \le k - 1 + t$  and

$$Q(a_i) = b_i E(a_i)$$
 for  $0 \le i < n$ .

▶ Take coeff. of Q(x) and E(x) as variables, one has k+t+t variables in n equations. Solve these equation to obtain E(x) and Q(x) and then f(x) = Q(x)/E(x)