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Representations of Reed-Solomon
codes



Background

» introduced by Irving Stoy Reed and Gustave Solomon in 1960

» probably the most widely used error-correcting codes til now

» applications in storage
» MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes
» RAID (Redundant Array of Inexpensive Disks) 6
» applications in communications

» DSL and WiMAX,
» satellite communications, DVB and ATSC
» mobile communications

» variants of the generalized RS codes are used in post-quantum

cryptography
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https://en.wikipedia.org/wiki/Irving_S._Reed
https://en.wikipedia.org/wiki/Gustave_Solomon
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/RAID

Representations of RS codes

» represented as BCH codes

» represented by low-degree polynomials
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Zeros of Cyclic Codes

» For a cyclic code C of length n over Iy, its generator
polynomials g(x)[x" — 1.
» g(x) can be given by

g(x) = my(x)---mi(x) = [T (x=€)--- [T (x - €)

jECI jGC,

where £ is a primitive n-th root of unity

» Instead of defining a cyclic code C from by its generator
polynomial g(x), one can also define the code C by the set of
all zeros of g(x)
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Complete Defining Set

» Let C be a cyclic code of length n over Fg with a generator
polynomial g(x)
» Let a = &, be a primitive n-th root of unity in GF(q")

The complete defining set of C is given by

Z(C)={i € Z,: g(a') = 0 for the generator poly. g(x) of C}
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Relation

For a cyclic code C over [F; of length n, the relation between its
generator polymial and its defining set is given by

i€Z(C)

» The complete defining set is a union of disjoint cyclotomic
cosets, i.e,, Z(C) = C, U---U G,
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Relation

For a cyclic code C over [F; of length n, the relation between its
generator polymial and its defining set is given by

i€Z(C)

» The complete defining set is a union of disjoint cyclotomic
cosets, i.e,, Z(C) = C, U---U G,

» NB: given a cyclic code C, its (complete) defining set depends
on the choice of «

» The dimension of C is n — deg(g) = n— |Z(C)|

Question: what about the minimum distance of C with prescribed
Z(C)?
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Example

Consider the binary cyclic code C of length 7 with Z(C) = {1, 2,4}.
Take « as the root of f(x) = x3 + x + 1.

Then g(x) = (x — a)(x — a?)(x — a*) = x3 + x + 1 is the

generator polynomial of C.

C is thus a binary [7,4] code (with min. Hamming weight 3)
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Minimum Distance of Cyclic Codes

» Computing the true minimum distance of a cyclic code is a
hard problem

» The BCH bound is a lower bound for the minimum distance

» Although the BCH bound is tight in many cases, it is not

always the true minimum distance
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The Bose-Chaudhuri-Hocquenghem (BCH) bound

Let C be a cyclic code such that its complete defining set Z(C)
has

0 — 1 consective elements b,b+1,...,b+ 0 — 2,
then C has its minimum distance

d(C) > 6.
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BCH codes

A cyclic code of length n over F, with (complete) defining set
{b,b+1,---,b+5—2}

is called a BCH code with designed minumum distance §. Here the
generator polynomial is given by

g(x) = LeastCommonMultiple(mp(x), mpy1(x), -+, mprs—_2(x)),

where m;(x) is the minimal polynomial of o' over F,.

The BCH code

» s called narrow sense if b=1; and

» is called primitive if n = g™ — 1 for certain integer m.
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BCH view of RS codes

Let o be a primitive element of F; and b be an integer. For two
positive integers n < g and k < n, define a polynomial

g(x) — (X - Oéb)(X - abJrl) . (X . ab+n*k71)'

Then the RS code over [F; of length n is defined as the BCH code
with g(x) as its generator polynomial.

For simplicity, we will take b = 1.
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Parameters of RS codes

» the code length n < @, and in practice is chosen as g — 1
» the minimum distance d = n—k+1

» the BCH bound gives d > n— k+1
» the Singleton bound gives d < n—k+1
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Polynomial view of RS codes

Let k be a positive integer. Define a set of polynomials over I, as

follows
Pe={fo+fax+ -+ fi_x1: ficF,}

Let a,...,a,—1 be n distinct elements in F,. The (original) RS

code is defined by

C ={(f(ao),...,f(an-1)) : f € Px}.
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Parameters of RS codes

» the code length n < @, and in practice is chosen as g — 1
» the minimum distance d = n—k+1

» the difference of any two polynomials has degree less than k,
so it has at most k — 1 zeros, which implies it has at least
n — k 4+ 1 nonzeros when evaluating at elements aq, ..., a,.
This impliesd > n—k+1

» the Singleton bound gives d < n—k+1
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Encoding of RS codes




BCH view

me — c(x Zc,

A codeword is a polynomial of degree < n.

With the generator polynomial g(x) = [] (x — a'), there are two
i=1
encoding methods for cyclic RS codes:

1. normal encoding: c(x) = g(x)m(x)

2. systematic encoding: c(x) = x""¥m(x) — r(x) where

r(x) = x"""m(x) mod g(x)
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Polynomial /Sequence view

(mo, co0og mk_l) — (C(), so0og C,,,l)

A codeword is a sequence of the evaluations of a polynomial at
different elements a;’s in .

1. normal encoding:
> m(x) = mg+ mx+ -+ me_xk71
» calculate ¢; = m(aj) for 0 <j < n
2. systematic encoding
» use Lagrange interpolation to derive a polynomial p(x) such
that p(a;j) = m; for j=0,1,.... k-1
» calculate ¢; = p(aj) for k <j <n
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Decoding of RS codes




Summary of Decoding BCH codes

There are many algorithms for decoding RS codes in the view of
BCH codes. The most common ones follow this general outline:

1. Calculate the syndromes s for the received vector

2. Determine the error locator polynomial o(x) from the key
equation

3. Determine the error locations iy, - - - , i from the roots of the
error location polynomial

4. Determine the error values e;,- - - , e;, at those error locations

5. Correct the errors

During some of these steps, the decoding algorithm may determine
that the received vector has too many errors, yeilding a decoding
failure
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Syndrome Calculation

Let C be a BCH code of length n with defining set

I={bb+1,-- b+5—2}

Regard a received word r as r(x) = Y, rix' = c(x) + e(x), where
e(x) is the error polynomial

Calculate the syndrome s; = r(o/) for j € I.

» If s; =0 for all j € /, then r(x) = c(x) and there’s no error;
» IF s; # 0 for certain j € /, then e(x) # 0 and we need to
determine the error polynomial e(x)
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Determine Error-Locator Polynomial

Suppose the error polynomial e(x) has t errors, namely,
e(x) = ey x + - + e x"

with e; #0forr=1,---  t.
Let z, = o and define the error-locator polynomial as

t
o(x) = H(l —zx) =1+01x+ - opx’
r=1
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Forjel={bb+1,--- ,b+0—2},
5J—r( aJ)—Ze,r

From the defnition of o(x), one has

0=¢;z Zitt o(1/z) = (e; ’+t+a ez L

forr=1,---,t.

Therefore, for integers i > 0,

Si+t + O1Si4t—1+ -+ 05; = 0.

i
+ O-teirzr)
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The key equations have their origin from Newton's identities.

Consider a binary narrow-sense BCH code and verify the key

equation, where s(x) = s1 + SHx + - -+ + spx3t L

s(x)o(x) = Q(x) mod (X2t)

where Q(x) has degree at most t.
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Consider t consective equations
Sh+t = O1Sp4t—1 + "+ 0tSp
Sbtt+1 = O1Spyt + ** + OtSpyl
Sp42t—1 = O1Sp42t—2 + *+* + OtSpi—1

This is the same as

Sb+t—1  Sbtt-2 - Sh o1 Sb+t
Sb+t Sb+t—1 0 Shtl 02 Sh+t+1
Sb+2t—1 Sb2t—2 ' Shyt—1 Ot Sh+2t—1
Solving the above equation gives the coefficients o1, - - - , 0%.

The error-locator polynomial o(x) =1+ > f_, oyxt is thus

obtained
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Determine error-positions

From the definition of z, = a/ and

t

o(x)=1+0o1x+ --ox' = H(l — Z;Xx).

r=1
In order to determine {i, - , i}, we need to use
» brute-force search on the roots {z,--- ,z} of o(x)
» Chien's search on the roots {z, -, z:} of o(x)

This gives the error positions in the error polynomial e(x)
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Determine error values

The error values e, --- , e, can be determined by solving the

t

equations

s =e(o)) = eyzl + - + &7
forjel={bb+1---,b+J—2}
An more efficient method is to use Forney's algorithm:

» calculate error-evaluation poly. Q(x) = S(x)o(x)
(mod x%~1), where S(x) = sp + Spy1X + - + Sprg_ox’ 2
» the error value at position i, is given by
akQ(a~k
. _ o)

" abicg! (o k)
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Overview of Decoding RS codes

So far RS codes are the most attractive algebraic codes in
applications in the sense that

» there is no restrictions on the parameters n, k, d of RS codes
over g except that n < g

» the nice algebraic structure of RS codes allows for several
polynomial-time decoding algorithms

» Peterson-Gorenstein-Zierler alg. , Berlekamp-Massey alg.,
Welch-Berlekamp alg., Sugiyama alg., Gao alg.
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Decoding of RS codes in polynomial representation

Given the known parameters of a RS code, including

» the finite field Fq
» parameters [n, k|

P the evaluation points ag,...,ap—1
and a received word
r=1(r,...,rm-1),
find the polynomial f(x) of degree < k that gives a codeword
c=(f(ap),.--,f(an-1))

that is closest to r.
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Berlekamp-Welch Decoding

» US patent (link) by Berlekamp and Welch in 1983

» created for the original view of RS codes and can be extended
for GRS codes
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https://patents.google.com/patent/US4633470A/en

Decoding Strategy

» Suppose the received word r contains t errors at positions
ii,..., 0t and set a monic error polynomial E(x) with
E(aj,)=0forr=1,...,t. Then,

(f(ai) — bi)E(aj) =0 for bj=r;,i=0,1,...,n—1.
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Decoding Strategy

» Suppose the received word r contains t errors at positions
ii,..., 0t and set a monic error polynomial E(x) with
E(aj,)=0forr=1,...,t. Then,

(f(ai) — bi)E(aj) =0 for bj=r;,i=0,1,...,n—1.
» Define Q(x) = f(x)E(x). Then deg(Q) < k — 1+t and
Q(a;) = biE(aj) for 0 < i < n.

» Take coeff. of Q(x) and E(x) as variables, one has k +t + t
variables in n equations. Solve these equation to obtain E(x)

and Q(x) and then f(x) = Q(x)/E(x)
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