
The Roadmap from Polynomials to

Quantum-safe Cryptosystems

A perspective from discrete mathematics (Part 2/4)

Chunlei Li (University of Bergen, Norway)

INCP2-2024/10213 on

Mathematical Theory of Data Transmission and Data Encryption

Oct. 6-10, 2025, Tromsø

Fall school on Geometry in Cryptography and Communication



Outline

1. Representations of Reed-Solomon codes

2. Encoding of RS codes

3. Decoding of RS codes

1 / 28



Representations of Reed-Solomon

codes



Background

▶ introduced by Irving Stoy Reed and Gustave Solomon in 1960

▶ probably the most widely used error-correcting codes til now

▶ applications in storage

▶ MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes
▶ RAID (Redundant Array of Inexpensive Disks) 6

▶ applications in communications

▶ DSL and WiMAX,
▶ satellite communications, DVB and ATSC
▶ mobile communications

▶ variants of the generalized RS codes are used in post-quantum

cryptography
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https://en.wikipedia.org/wiki/Irving_S._Reed
https://en.wikipedia.org/wiki/Gustave_Solomon
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/RAID


Representations of RS codes

▶ represented as BCH codes

▶ represented by low-degree polynomials
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Zeros of Cyclic Codes

▶ For a cyclic code C of length n over Fq, its generator

polynomials g(x)|xn − 1.

▶ g(x) can be given by

g(x) = mi1(x) · · ·mit (x) =
∏
j∈Ci1

(x − ξjn) · · ·
∏
j∈Cit

(x − ξjn)

where ξ is a primitive n-th root of unity

▶ Instead of defining a cyclic code C from by its generator

polynomial g(x), one can also define the code C by the set of

all zeros of g(x)
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Complete Defining Set

▶ Let C be a cyclic code of length n over Fq with a generator

polynomial g(x)

▶ Let α = ξn be a primitive n-th root of unity in GF (qr )

The complete defining set of C is given by

Z (C) = {i ∈ Zn : g(αi ) = 0 for the generator poly. g(x) of C}
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Relation

For a cyclic code C over Fq of length n, the relation between its

generator polymial and its defining set is given by

g(x) =
∏

i∈Z(C)

(x − αi ).

▶ The complete defining set is a union of disjoint cyclotomic

cosets, i.e,, Z (C) = Ci1 ∪ · · · ∪ Cit

▶ NB: given a cyclic code C, its (complete) defining set depends

on the choice of α

▶ The dimension of C is n − deg(g) = n − |Z (C)|

Question: what about the minimum distance of C with prescribed

Z (C)?
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Example

Consider the binary cyclic code C of length 7 with Z (C) = {1, 2, 4}.

Take α as the root of f (x) = x3 + x + 1.

Then g(x) = (x − α)(x − α2)(x − α4) = x3 + x + 1 is the

generator polynomial of C.

C is thus a binary [7, 4] code (with min. Hamming weight 3)
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Minimum Distance of Cyclic Codes

▶ Computing the true minimum distance of a cyclic code is a

hard problem

▶ The BCH bound is a lower bound for the minimum distance

▶ Although the BCH bound is tight in many cases, it is not

always the true minimum distance
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The Bose-Chaudhuri-Hocquenghem (BCH) bound

Let C be a cyclic code such that its complete defining set Z (C)
has

δ − 1 consective elements b, b + 1, . . . , b + δ − 2,

then C has its minimum distance

d(C ) ≥ δ.
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BCH codes

A cyclic code of length n over Fq with (complete) defining set

{b, b + 1, · · · , b + δ − 2}

is called a BCH code with designed minumum distance δ. Here the

generator polynomial is given by

g(x) = LeastCommonMultiple(mb(x),mb+1(x), · · · ,mb+δ−2(x)),

where mi (x) is the minimal polynomial of αi over Fq.

The BCH code

▶ is called narrow sense if b = 1; and

▶ is called primitive if n = qm − 1 for certain integer m.
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BCH view of RS codes

Let α be a primitive element of Fq and b be an integer. For two

positive integers n ≤ q and k < n, define a polynomial

g(x) = (x − αb)(x − αb+1) · · · (x − αb+n−k−1).

Then the RS code over Fq of length n is defined as the BCH code

with g(x) as its generator polynomial.

For simplicity, we will take b = 1.
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Parameters of RS codes

▶ the code length n ≤ q, and in practice is chosen as q − 1

▶ the minimum distance d = n − k + 1

▶ the BCH bound gives d ≥ n − k + 1
▶ the Singleton bound gives d ≤ n − k + 1
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Polynomial view of RS codes

Let k be a positive integer. Define a set of polynomials over Fq as

follows

Pk = {f0 + f1x + · · ·+ fk−1x
k−1 : fi ∈ Fq}

Let a0, . . . , an−1 be n distinct elements in Fq. The (original) RS

code is defined by

C = {(f (a0), . . . , f (an−1)) : f ∈ Pk} .
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Parameters of RS codes

▶ the code length n ≤ q, and in practice is chosen as q − 1

▶ the minimum distance d = n − k + 1

▶ the difference of any two polynomials has degree less than k,

so it has at most k − 1 zeros, which implies it has at least

n − k + 1 nonzeros when evaluating at elements α1, . . . , αn.

This implies d ≥ n − k + 1
▶ the Singleton bound gives d ≤ n − k + 1
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Encoding of RS codes



BCH view

m(x) =
k−1∑
i=0

mix
i −→ c(x) =

n−1∑
i=0

cix
i

A codeword is a polynomial of degree < n.

With the generator polynomial g(x) =
n−k∏
i=1

(x − αi ), there are two

encoding methods for cyclic RS codes:

1. normal encoding: c(x) = g(x)m(x)

2. systematic encoding: c(x) = xn−km(x)− r(x) where

r(x) ≡ xn−km(x) mod g(x)
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Polynomial/Sequence view

(m0, . . . ,mk−1) −→ (c0, . . . , cn−1)

A codeword is a sequence of the evaluations of a polynomial at

different elements aj ’s in Fq.

1. normal encoding:

▶ m(x) = m0 +m1x + · · ·+mk−1x
k−1

▶ calculate cj = m(aj) for 0 ≤ j < n

2. systematic encoding

▶ use Lagrange interpolation to derive a polynomial p(x) such

that p(aj) = mj for j = 0, 1, . . . , k − 1
▶ calculate cj = p(aj) for k ≤ j < n

16 / 28



Decoding of RS codes



Summary of Decoding BCH codes

There are many algorithms for decoding RS codes in the view of

BCH codes. The most common ones follow this general outline:

1. Calculate the syndromes s for the received vector

2. Determine the error locator polynomial σ(x) from the key

equation

3. Determine the error locations i1, · · · , it from the roots of the

error location polynomial

4. Determine the error values ei1 , · · · , eit at those error locations

5. Correct the errors

During some of these steps, the decoding algorithm may determine

that the received vector has too many errors, yeilding a decoding

failure
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Syndrome Calculation

Let C be a BCH code of length n with defining set

I = {b, b + 1, · · · , b + δ − 2}.

Regard a received word r as r(x) =
∑

i rix
i = c(x) + e(x), where

e(x) is the error polynomial

Calculate the syndrome sj = r(αj) for j ∈ I .

▶ If sj = 0 for all j ∈ I , then r(x) = c(x) and there’s no error;

▶ IF sj ̸= 0 for certain j ∈ I , then e(x) ̸= 0 and we need to

determine the error polynomial e(x)
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Determine Error-Locator Polynomial

Suppose the error polynomial e(x) has t errors, namely,

e(x) = ei1x
i1 + · · ·+ eitx

it

with eir ̸= 0 for r = 1, · · · , t.

Let zr = αir and define the error-locator polynomial as

σ(x) =
t∏

r=1

(1− zrx) = 1 + σ1x + · · ·σtx t
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For j ∈ I = {b, b + 1, · · · , b + δ − 2},

sj = r(αj) = e(αj) =
t∑

r=1

eir z
j
r

From the defnition of σ(x), one has

0 = eir z
i+t
r σ(1/zr ) = (eir z

i+t
r + σ1eir z

i+t−1
r + · · ·+ σteir z

i
r )

for r = 1, · · · , t.

Therefore, for integers i ≥ 0,

si+t + σ1si+t−1 + · · ·+ σtsi = 0.
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The key equations have their origin from Newton’s identities.

Consider a binary narrow-sense BCH code and verify the key

equation, where s(x) = s1 + s2x + · · ·+ s2tx
2t−1,

s(x)σ(x) ≡ Ω(x) mod (x2t)

where Ω(x) has degree at most t.
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Consider t consective equations

sb+t = σ1sb+t−1 + · · ·+ σtsb

sb+t+1 = σ1sb+t + · · ·+ σtsb+1
...

sb+2t−1 = σ1sb+2t−2 + · · ·+ σtsb+t−1

This is the same as
sb+t−1 sb+t−2 · · · sb

sb+t sb+t−1 · · · sb+1
...

...
...

...

sb+2t−1 sb+2t−2 · · · sb+t−1




σ1

σ2
...

σt

 =


sb+t

sb+t+1
...

sb+2t−1


Solving the above equation gives the coefficients σ1, · · · , σt .

The error-locator polynomial σ(x) = 1 +
∑t

i=1 σtx
t is thus

obtained
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Determine error-positions

From the definition of zr = αir and

σ(x) = 1 + σ1x + · · ·σtx t =
t∏

r=1

(1− zrx).

In order to determine {i1, · · · , it}, we need to use

▶ brute-force search on the roots {z1, · · · , zt} of σ(x)

▶ Chien’s search on the roots {z1, · · · , zt} of σ(x)

This gives the error positions in the error polynomial e(x)
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Determine error values

The error values ei1 , · · · , eit can be determined by solving the

equations

sj = e(αj) = ei1z
j
1 + · · ·+ eitz

j
t

for j ∈ I = {b, b + 1, · · · , b + δ − 2}.

An more efficient method is to use Forney’s algorithm:

▶ calculate error-evaluation poly. Ω(x) = S(x)σ(x)

(mod xδ−1), where S(x) = sb + sb+1x + · · ·+ sb+δ−2x
δ−2

▶ the error value at position ir is given by

eir =
αikΩ(α−ik )

αbikσ′(α−ik )
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Overview of Decoding RS codes

So far RS codes are the most attractive algebraic codes in

applications in the sense that

▶ there is no restrictions on the parameters n, k, d of RS codes

over Fq except that n ≤ q

▶ the nice algebraic structure of RS codes allows for several
polynomial-time decoding algorithms

▶ Peterson-Gorenstein-Zierler alg. , Berlekamp-Massey alg.,

Welch-Berlekamp alg., Sugiyama alg., Gao alg.
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Decoding of RS codes in polynomial representation

Given the known parameters of a RS code, including

▶ the finite field Fq

▶ parameters [n, k]

▶ the evaluation points a0, . . . , an−1

and a received word

r = (r0, . . . , rn−1),

find the polynomial f (x) of degree < k that gives a codeword

c = (f (a0), . . . , f (an−1))

that is closest to r.
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Berlekamp-Welch Decoding

▶ US patent (link) by Berlekamp and Welch in 1983

▶ created for the original view of RS codes and can be extended

for GRS codes

27 / 28

https://patents.google.com/patent/US4633470A/en


Decoding Strategy

▶ Suppose the received word r contains t errors at positions

i1, . . . , it and set a monic error polynomial E (x) with

E (air ) = 0 for r = 1, . . . , t. Then,

(f (ai )− bi )E (ai ) = 0 for bi = ri , i = 0, 1, . . . , n − 1.

▶ Define Q(x) = f (x)E (x). Then deg(Q) ≤ k − 1 + t and

Q(ai ) = biE (ai ) for 0 ≤ i < n.

▶ Take coeff. of Q(x) and E (x) as variables, one has k + t + t

variables in n equations. Solve these equation to obtain E (x)

and Q(x) and then f (x) = Q(x)/E (x)

28 / 28



Decoding Strategy

▶ Suppose the received word r contains t errors at positions

i1, . . . , it and set a monic error polynomial E (x) with

E (air ) = 0 for r = 1, . . . , t. Then,

(f (ai )− bi )E (ai ) = 0 for bi = ri , i = 0, 1, . . . , n − 1.

▶ Define Q(x) = f (x)E (x). Then deg(Q) ≤ k − 1 + t and

Q(ai ) = biE (ai ) for 0 ≤ i < n.

▶ Take coeff. of Q(x) and E (x) as variables, one has k + t + t

variables in n equations. Solve these equation to obtain E (x)

and Q(x) and then f (x) = Q(x)/E (x)

28 / 28



Decoding Strategy

▶ Suppose the received word r contains t errors at positions

i1, . . . , it and set a monic error polynomial E (x) with

E (air ) = 0 for r = 1, . . . , t. Then,

(f (ai )− bi )E (ai ) = 0 for bi = ri , i = 0, 1, . . . , n − 1.

▶ Define Q(x) = f (x)E (x). Then deg(Q) ≤ k − 1 + t and

Q(ai ) = biE (ai ) for 0 ≤ i < n.

▶ Take coeff. of Q(x) and E (x) as variables, one has k + t + t

variables in n equations. Solve these equation to obtain E (x)

and Q(x) and then f (x) = Q(x)/E (x)

28 / 28


	Representations of Reed-Solomon codes
	Encoding of RS codes
	Decoding of RS codes

