
The Roadmap from Polynomials to

Quantum-safe Cryptosystems

A perspective from discrete mathematics (Part 1/4)

Chunlei Li (University of Bergen, Norway)

INCP2-2024/10213 on

Mathematical Theory of Data Transmission and Data Encryption

Oct. 6-10, 2025, Tromsø

Fall school on Geometry in Cryptography and Communication

Outline1

1. Algebra Structures

2. Finite Fields

3. Linear Block Codes

4. Cyclic and Quasi-Cyclic Codes

1The materials in this lecture can be found from [1, 2]

1 / 56

Algebra Structures

Algebra Structures

Algebraic Structure (S ,⊙)
A set S with certain arithmetic operations “⊙”

S × S → S

(xi , xj) 7→ xi ⊙ xj

satisfying certain laws .

2 / 56

Algebra Structures - Group

Group (G ,⊗)
A set G with an arithmetic operation ⊗ on elements in G

satisfying the following four laws :

▶ closure: x ⊗ y ∈ G for any x , y ∈ G ;

▶ associative: (x ⊗ y)⊗ z = x ⊗ (y ⊗ z);

▶ identity element: ∃ I ∈ G such that x ⊗ I = I ⊗ x = x ;

▶ inverse element: ∃ y ∈ G such that x ⊗ y = y ⊗ x = I .

G is a cyclic group if G = ⟨g⟩ = {I , g , g2, · · · , }, where g is

called a generator of G ;

3 / 56

Algebra Structures - Group

Group (G ,⊗)
A set G with an arithmetic operation ⊗ on elements in G

satisfying the following four laws :

▶ closure: x ⊗ y ∈ G for any x , y ∈ G ;

▶ associative: (x ⊗ y)⊗ z = x ⊗ (y ⊗ z);

▶ identity element: ∃ I ∈ G such that x ⊗ I = I ⊗ x = x ;

▶ inverse element: ∃ y ∈ G such that x ⊗ y = y ⊗ x = I .

G is a cyclic group if G = ⟨g⟩ = {I , g , g2, · · · , }, where g is

called a generator of G ;

Ex. 1: Which is a group?

▶ ({0, 1, 2, 3},+), (N,+), (Z,+), (Z,×);

3 / 56

Algebra Structures - Ring

Ring (R,⊗,⊕)
A set R with two arithmetic operations ⊗ and ⊕ on elements in

G satisfying the following laws :

▶ (R,⊕) is a group and x ⊕ y = y ⊕ x (Abelian Group)

▶ for multiplication ⊗:
▶ closure: x ⊗ y ∈ R;
▶ associative: (x ⊗ y)⊗ z = x ⊗ (y ⊗ z);

▶ distributive: x ⊗ (y ⊕ z) = (x ⊗ y)⊕ (x ⊗ z)

4 / 56

Algebra Structures - Ring

Ring (R,⊗,⊕)
A set R with two arithmetic operations ⊗ and ⊕ on elements in

G satisfying the following laws :

▶ (R,⊕) is a group and x ⊕ y = y ⊕ x (Abelian Group)

▶ for multiplication ⊗:
▶ closure: x ⊗ y ∈ R;
▶ associative: (x ⊗ y)⊗ z = x ⊗ (y ⊗ z);

▶ distributive: x ⊗ (y ⊕ z) = (x ⊗ y)⊕ (x ⊗ z)

Example (Rings we have learned)

▶ Integer Ring (Z,+,×);
▶ Polynomial Ring (P,+,⊗) with P = {

∑
i aix

i : ai ∈ Z};

4 / 56

Algebra Structures - Field

Field (F ,⊗,⊕)
A set F with two arithmetic operations ⊗ and ⊕ on elements in

F satisfying the following laws :

▶ (R,⊕) is an Abelian group;

▶ (R \ {0},⊗) is also an Abelian group;

▶ x ⊗ (y ⊕ z) = (x ⊗ y)⊕ (x ⊗ z)

5 / 56

Algebra Structures - Field

Field (F ,⊗,⊕)
A set F with two arithmetic operations ⊗ and ⊕ on elements in

F satisfying the following laws :

▶ (R,⊕) is an Abelian group;

▶ (R \ {0},⊗) is also an Abelian group;

▶ x ⊗ (y ⊕ z) = (x ⊗ y)⊕ (x ⊗ z)

Example

▶ Is (Z,+,×) or (Zn,+,×) a field?

▶ Number Fields: (R,+,×) (Infinite number of elements)

Ex. 2

Give a few more examples of fields

5 / 56

Algebra Structures - Field

Example

▶ Is (Z,+,×) or (Zn,+,×) a field?

▶ Number Fields: (R,+,×) (Infinite number of elements)

Ex. 2

Give a few more examples of fields

5 / 56

Algebra Structures Hierarchy - Group, Ring, Field

A1 - Closure

A2 - Associative
A3 - Identity element

A4 - Inverse element
A5 - Commutativity of Addition

M1 - Closure under multiplication

M2 - Associativity of multiplication

M3 - Distributive
M4 - Commutativity of multiplication

M5 - Multiplicative Identity

M6 - No Zero Divisors
M7 - Multiplicative Inverse

G
rou

p

6 / 56

Algebra Structures Hierarchy - Group, Ring, Field

A1 - Closure

A2 - Associative
A3 - Identity element

A4 - Inverse element
A5 - Commutativity of Addition

M1 - Closure under multiplication

M2 - Associativity of multiplication

M3 - Distributive
M4 - Commutativity of multiplication

M5 - Multiplicative Identity

M6 - No Zero Divisors
M7 - Multiplicative Inverse

G
rou

p

A
b
elian

G
rou

p

6 / 56

Algebra Structures Hierarchy - Group, Ring, Field

A1 - Closure

A2 - Associative
A3 - Identity element

A4 - Inverse element
A5 - Commutativity of Addition

M1 - Closure under multiplication

M2 - Associativity of multiplication

M3 - Distributive
M4 - Commutativity of multiplication

M5 - Multiplicative Identity

M6 - No Zero Divisors
M7 - Multiplicative Inverse

G
rou

p

A
b
elian

G
rou

p

R
in
g

6 / 56

Algebra Structures Hierarchy - Group, Ring, Field

A1 - Closure

A2 - Associative
A3 - Identity element

A4 - Inverse element
A5 - Commutativity of Addition

M1 - Closure under multiplication

M2 - Associativity of multiplication

M3 - Distributive
M4 - Commutativity of multiplication

M5 - Multiplicative Identity

M6 - No Zero Divisors
M7 - Multiplicative Inverse

G
rou

p

A
b
elian

G
rou

p

R
in
g

C
om

m
u
tative

6 / 56

Algebra Structures Hierarchy - Group, Ring, Field

A1 - Closure

A2 - Associative
A3 - Identity element

A4 - Inverse element
A5 - Commutativity of Addition

M1 - Closure under multiplication

M2 - Associativity of multiplication

M3 - Distributive
M4 - Commutativity of multiplication

M5 - Multiplicative Identity

M6 - No Zero Divisors
M7 - Multiplicative Inverse

G
rou

p

A
b
elian

G
rou

p

R
in
g

C
om

m
u
tative

In
tegral

D
om

ain

6 / 56

Algebra Structures Hierarchy - Group, Ring, Field

A1 - Closure

A2 - Associative
A3 - Identity element

A4 - Inverse element
A5 - Commutativity of Addition

M1 - Closure under multiplication

M2 - Associativity of multiplication

M3 - Distributive
M4 - Commutativity of multiplication

M5 - Multiplicative Identity

M6 - No Zero Divisors
M7 - Multiplicative Inverse

G
rou

p

A
b
elian

G
rou

p

R
in
g

C
om

m
u
tative

In
tegral

D
om

ain

F
ield

6 / 56

Finite Fields

Finite Fields Fpn

Existence of Finite Fields

Finite fields exist iff. they contain pn elements for a prime p.

Construction of Finite Fields

▶ n = 1, Zp = {0, 1, 2, · · · , p − 1} with (+,×) is a field;

▶ (Zp,+) is an abelian group;
▶ (Zp,×) is also an abelian group:

∀ x ∈ Z∗
p, ∃ y ∈ Z∗

p s.t. xy ≡ 1 mod p since (x , p) = 1

▶ The binary case p = 2 is of particular interest

▶ the addition in GF (2) = {0, 1} is the logic XOR

7 / 56

Finite Fields Fpn

▶ Integer Ring (Z,+,×)
▶ prime p ∈ Z: divisible only by 1 and itself;
▶ a ≡ b mod p iff. p|(a− b)
▶ The ring Z modulo a prime p yields Fp;

8 / 56

Finite Fields Fpn

▶ Integer Ring (Z,+,×)
▶ prime p ∈ Z: divisible only by 1 and itself;
▶ a ≡ b mod p iff. p|(a− b)
▶ The ring Z modulo a prime p yields Fp;

▶ Poly. Ring (Zp[x],+,×), Zp[x] = {
∑

i aix
i : ai ∈ Zp}

▶ irreducible poly. f (x): “prime” in Zp[x];
▶ g1(x) ≡ g2(x) mod f (x) iff. f (x)|(g1(x)− g2(x)
▶ Zp[x] modulo an irreducible poly f (x) of degree n yields Fpn

8 / 56

Finite Fields Fpn

Unique Representation

Let f (x) be an irreducible poly. of degree n in Fp[x].

Fpn := Fp[x]
/
(f (x)) =

{
n−1∑
i=0

aix
i , ai ∈ Fp

}

▶ a(x)⊕ b(x) =
∑n−1

i=0 (ai ⊕ bi)x
i = c(x) =

∑n−1
i=0 cix

i

▶ a(x)⊗ b(x) = a(x)b(x)mod f (x) = c(x) =
∑n−1

i=0 cix
i

a(x) = an−1x
n−1 + · · ·+ a1x + a0 ←→ a = (an−1, · · · , a1, a0)

▶ a⊕ b ↔ a(x)⊕ b(x) = c(x)↔ c = (c0, · · · , cn−1)

▶ a⊗ b ↔ a(x)⊗ b(x) = c(x)↔ c = (c0, · · · , cn−1)

9 / 56

Finite Fields F23

10 / 56

Finite Fields F24

c

Ex. : Complete the following arithmetic

▶ (1, 0, 0, 1)⊗ (1, 1, 0, 0); (1, 0, 1, 1)⊗ (1, 0, 0, 1);

11 / 56

Properties of Finite Fields

For a finite field Fpn generated from a primitive poly. f (x) of

degree n and a root α, we have

▶ F∗
pn is a cyclic multiplicative group generated by α

▶ the factorization

xp
n − x =

∏
β∈Fpn

(x − β) = x

pn−2∏
j=0

(x − αj)

▶ all linear maps from Fpn to Fp are given by the trace function

Tr(ax) with a ∈ Fpn , where

Tr(x) = x + xp + · · ·+ xp
n−1

Ex. 4

Prove that Tr(β) belongs to Fp for any β ∈ Fpn

12 / 56

Linear Block Codes

Vector Space

Suppose F is a field with addition + and multiplication ·

Vector Space over F
Suppose Fn is the set of all n-tuples over F, i.e.,

Fn = {x = (x0, x1, . . . , xn−1)|xi ∈ F, 1 ≤ i ≤ n}.

Then Fn forms a vector space V = (Fn,+,F), which, for any
x , y ∈ Fn and c ∈ F, satisfies

▶ x + y = (x0 + y0, x1 + y1, . . . , xn−1 + yn−1) ∈ Fn

▶ c · x = (cx0, cx1, . . . , cxn−1) ∈ Fn

A vector space over V = (Fn,+,F) is an additive group allowing

for scalar product

13 / 56

Basis

A group of n elements α1, . . . , αn in Fn is called a basis of Fn if

they are linearly independent over F. Moreover,

Fn =

{
n∑

i=1

ciαi | c1, . . . , cn ∈ F

}

14 / 56

Subsapce

For a vector space V = (Fn,+,F), a subset S ⊆ V is a linear

subspace of V if for any x , y ∈ S and c ∈ F,

▶ x + y ∈ S and c · x ∈ S

If S can be generated by k linearly independent α1, . . . , αk as

S =

{
k∑

i=1

ciαi | c1, . . . , cn ∈ F

}
,

then S has dimension k with a basis α1, . . . , αk .

We are mainly interested in F as finite fields Fq in the context of

coding theory and cryptography.

15 / 56

Linear Codes for Error Correction

When the vector space Fn
q is equipped with a certain metric of

distance, it brings error-correcting capability.

▶ Encoder: message of length k ⇒ codeword of length n
▶ Decoder:

▶ receive a noisy word: transmitted codeword + noise
▶ identify the transmitted codeword by the maximum likelihood

(ML) strategy, which often reduces to nearest neighbor or

majority voting
16 / 56

Linear Codes for Error Correction

When the vector space Fn
q is equipped with a certain metric of

distance, it brings error-correcting capability.

▶ Encoder: message of length k ⇒ codeword of length n
▶ Decoder:

▶ receive a noisy word: transmitted codeword + noise
▶ identify the transmitted codeword by the maximum likelihood

(ML) strategy, which often reduces to nearest neighbor or

majority voting
16 / 56

Linear Codes with the Hamming metric

The Hamming weight of x ∈ Fn
q is

wt(x) = |{1 ≤ i ≤ n : xi ̸= 0}|.

The Hamming distance between x , y ∈ Fn
q is defined as

d(x , y) = wt(x − y).

Linear Codes

An [n, k, d]q linear code C is an Fq-subspace of Fn
q with

▶ dimension k

▶ minimum distance/weight d , namely,

min
c1 ̸=c2∈C

d(x , y) = min
0̸=c∈C

wt(c) = d .

17 / 56

Generator and Parity-Check Matrices

Generator Matrix

Given an [n, k] linear code C , its generator matrix is

a k × n matrix whose k rows form a basis of C

▶ each basis of C yields a genertor matrix of C

▶ each codeword c = mG for some message m ∈ Fk
q

18 / 56

Parity-Check Matrix

An [n, k] linear code C can be seen as a solution space of a

system of linear equations xH⊺ = 0, where H is an (n − k)× n

matrix with rank n− k , and is called the parity-check matrix of C

▶ cH⊺ = 0 for any c ∈ C ;

▶ GH⊺ = 0k×(n−k) since cH⊺ = mGH⊺ = 0 for any m ∈ Fk
q

19 / 56

Systematic Generator and Parity-Check Matrix

For an [n, k] linear code C , all generator matrix can be reduced to

a systematic generator matrix of the form

G = [Ik |P]

Correpondingly, the systematic parity-check matrix of C has the

form

H = [−P⊺|I(n−k)]

where It is the t × t identity matrix

It is clear that

GH⊺ = [Ik ,Pk×(n−k)] · [−P⊺, I(n−k)×(n−k)]
⊺ = 0

20 / 56

Example. Find the systematic genertor matrix and parity-check

matrix for

C = {0000000, 1111111, 1000101, 1100010,
0110001, 1011000, 0101100, 0010110,

0001011, 0111010, 0011101, 1001110,

0100111, 1010011, 1101001, 1110100}

21 / 56

Dual Codes

For an [n, k , d]q linear code, its dual code is defined as follows:

C⊥ = {x ∈ Fn
q|x · c =

n∑
i=1

xici = 0}.

Properties of Dual Code

▶ C⊥ has dimension n − k

▶ a generator matrix of C⊥ is a parity-check of C , i.e.,

C⊥ = {mH|m ∈ Fn−k
q ,H is a parity-check matrix of C}

▶ a parity-check matrix of C⊥ is a generator of C

22 / 56

Advantages of Linear Codes

▶ more efficient to compute the minimum distance

▶ easy to encode messages with generator matrices

▶ could allow for efficient decoding

23 / 56

Encoding for Linear Codes

Given a generator matrix G of an [n, k] linear code, the encoding

process is given by

m 7→ m · G , for any m ∈ Fk
q

E.g.: the binary (7, 4, 3) Hamming code with generator matrix

G =


1000110

0100101

0010011

0001111


A message 0110 encoded as 0110110

24 / 56

Decoding for Linear Codes

Given a received word r = c + e, try to recover the original

codeword c.

Nearest Neighbor Decoding

Given a received word y , find a codeword c ∈ C closest to y :

ĉ = argminc∈Cd(c, y)

▶ a naive method: test all codewords c ∈ C , complexity O(qk)

25 / 56

Let’s try harder ...

Partition of Fn
q

Given an [n, k]q linear code C with parity-check matrix H, the

whole vector space Fn
q can be partitioned w.r.t H:

▶ cH⊺ = 0 for any c ∈ C

▶ xH⊺ = yH⊺ iff x − y ∈ C

▶ the standard array

Fn
q = C ⊔ (a2 + C) ⊔ · · · ⊔ (aqn−k + C)

where a+ C = {a+ c : c ∈ C} is called a coset of C

26 / 56

Example: For a (7, 3) code, a generator matrix is

G =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 .

The codewords for this code are

27 / 56

▶ each row is a coset of C

▶ the leading entry with smallest weight in each row is call the

coset leader

▶ For any r ∈ Fn
q, if r ∈ e + C , then rH⊺ = eH⊺ = s

28 / 56

Bounded-distance Decoding based on syndrome

Given a received word y = c + e, calculte the syndrome

s = yH⊺ = cH⊺ + eH⊺ = eH⊺

▶ make a syndrome table of e, eH⊺ for all errors e with

wt(e) = t ≤ ⌊d − 1

2
⌋

▶ for y , find a match in the table such that yH⊺ = eH⊺

▶ guess the codeword ĉ = y − e and check ĉH⊺ = 0 ?

29 / 56

Example: the binary (7, 4, 3) Hamming code with parity-check

matrix

H =

 1101100

1011010

0111001



30 / 56

A one-time look-up table:

e 100000 0100000 0010000 0001000 0000100 0000010 000001

eH⊺ 110 101 011 111 100 010 001

Suppose the received word y = 1100100 (from c = 1101100 with 1

bit error). The receiver compute

Hy⊺ = (1100100)

 1101100

1011010

0111001


⊺

= (111).

This matches with the error e = 0001000. Then the decoded word

is c ′ = y + e = 1101100. DONE!

Ex. 4: Decode the following words

▶ 0111101, 1110110, 0011011

31 / 56

Question

Given the standard array of C , can we decode errors e with

Hamming weight beyond one?

32 / 56

The Main Problem in Coding Theory

A good [n, k, d]q linear code should have

▶ large code rate k/n, and

▶ large relative distance d/n

Main Problem

▶ to optimize one of n, k, d for given values of the other two

▶ to design efficient decoding algorithms

33 / 56

How to construct good codes?

▶ a nontrivial research topic

▶ primary/direct constructions: from special objects in

algebra, combinatorics, geometry, etc.

▶ secondary constructions: manipulate good linear codes, e.g.

▶ extending: adding a parity symbol to each codeword
▶ truncating: removing symbols in fixed positions of all

codewords
▶ concatenating

34 / 56

Concatenated Codes

The concatenated code C = C1 ∗ C2 is a q-ary code given by

C = {(cα1 , . . . , cαn2
) | cαi ∈ C1, (α1, . . . , αn2) ∈ C2}

where

▶ C1 is an (n1,M1, d1) q-ary code (inner code)

▶ C2 is an (n2,M2, d2) M1-ary code (outer code)

▶ there exists a 1-to-1 correspondence between the alphabet of

size M1 used in C2 and codewords in C1 (e.g., C1 is a [8, 4]2

code and C2 is a code over F28)

The code C has parameters (n1n2,M2,≥ d1d2).

35 / 56

Cyclic and Quasi-Cyclic Codes

Brief Introduction

▶ Cyclic codes are in the center of interest of coding theory

▶ Cyclic codes of relatively small length have good parameters

▶ In the list cyclic codes of length 63 there are 51 codes that

have the largest known minimum distance for a given

dimension

▶ Binary cyclic codes are better than the GV bound for lengths

up to 1023

▶ Rich combinatorics is involved in the determination of the

parameters of cyclic codes

36 / 56

Cyclic Shift

The cyclic shift of a word c = (c0, c1, · · · , cn−1) ∈ Fn
q is defined by

σ(c) = (cn−1, c0, · · · , cn−2).

The cyclic shift defines a linear map σ : Fn
q → Fn

q. The i -fold

composition σi = σ ◦ · · · ◦ σ is the i-fold forward shift

Cyclic Codes

An Fq-linear code C of length n is called cyclic if

σ(c) ∈ C for any c ∈ C .

In other words, cyclic codes are invariant under σi for all i ≥ 0

37 / 56

Example - 1

Consider the binary [7, 4, 3] Hamming code C with generator

matrix

G =


1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


The codewords are

0000000, 1000110, 0100101, 1100011,

0010011, 1010101, 0110110, 1110000,

0001111, 1001001, 0101010, 1101100,

0011100, 1011010, 0111001, 1111111

The 3rd row’s shift 0100110 is not in C . Hence the Hamming code

is not cyclic.
38 / 56

Example - 1 (cont)

After a permutation of the columns (1265734) and a row operation

of G we get the generator matrix G ′ of the code C ′:
1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

→


1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1


In this case, every row of G ′ is a circular shift of the first row.

Note: C is not cyclic, but its equivalence C ′ is a cyclic code

39 / 56

Dual code

The dual of a cyclic code is again cyclic

Proof. Let C be a cyclic code. Then σ(c) ∈ C for all c ∈ C . So

σn−1(c) = (c1, · · · , cn−1, c0) ∈ C .

Let x ∈ C⊥. Then the inner product of x and any codeword in C

is zero. Thus,

⟨σ(x), c⟩ = xn−1c0 + x0c1 + · · ·+ xn−2cn−1

= x0c1 + · · ·+ xn−2cn−1 + xn−1c0

= ⟨x , σn−1(c)⟩ = 0.

That is, the inner product of σ(x) and any c ∈ C is zero. Thus,

σ(x) ∈ C⊥.

40 / 56

Dual code

The dual of a cyclic code is again cyclic

Proof. Let C be a cyclic code. Then σ(c) ∈ C for all c ∈ C . So

σn−1(c) = (c1, · · · , cn−1, c0) ∈ C .

Let x ∈ C⊥. Then the inner product of x and any codeword in C

is zero. Thus,

⟨σ(x), c⟩ = xn−1c0 + x0c1 + · · ·+ xn−2cn−1

= x0c1 + · · ·+ xn−2cn−1 + xn−1c0

= ⟨x , σn−1(c)⟩ = 0.

That is, the inner product of σ(x) and any c ∈ C is zero. Thus,

σ(x) ∈ C⊥.

40 / 56

Polynomial Ring Rqn

Take u(x) = xn − 1 and define the quotient ring

Rqn = Fq[x]/(u(x)) =
{∑n−1

i=0 aix
i | ai ∈ Fq

}
where xn = 1.

From xn = 1, we see that

x(a0 + a1x+ · · ·+ an−1x
n−1) = an−1 + a0x+ · · ·+ an−2x

n−2

41 / 56

Correspondence between Fn
q and Rqn

Consider the map ϕ : Fn
q → Rqn defined by

ϕ(a) = ϕ(c0, c1, · · · , cn−1) = c01+ c1x+ · · ·+ cn−1x
n−1 = c(x).

Then ϕ is an 1-to-1 one mapping that satisfies

ϕ(αc1 + βc2) = αϕ(c1) + βϕ(c2)

42 / 56

Cyclic [7, 4, 3] Hamming code - 1

Consider the [7, 4, 3] linear code C ′ with the generator polynomial

G ′ =


1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1


The row corresponds to

g ′
1(x) = 1 + x4 + x5

g ′
2(x) = x+ x5 + x6

g ′
3(x) = x2 + x4 + x5 + x6

g ′
4(x) = x3 + x4 + x6

43 / 56

Ideals of Rings

Examples of Rings

▶ the integer ring Z;
▶ the polynomial ring Z[x] = {

∑
i aix

i | ai ∈ Z}

Examples of Ideals

▶ the set nZ = {yn | y ∈ Z};
▶ the set

⟨g(x)⟩ = {a(x)g(x) | a(x) ∈ Z[x]}

44 / 56

Proposition

Cyclic codes in Fn
q correspond 1-to-1 to ideals in Rqn by

(c0, c1, · · · , cn−1)↔ c01+ c1x+ · · ·+ cn−1x
n−1

45 / 56

Ideals in Rqn

For the quotient ring

Rqn = Fq[x]/(u(x)) =
{∑n−1

i=0 aix
i | ai ∈ Fq

}
its ideal can be given by certain polynomial p(x) ∈ Rqn as

⟨p(x)⟩ = {p(x)a(x) : a(x) ∈ Rqn}

indicating that for any c(x) ∈ ⟨p(x)⟩, one has

c(x) = a(x)p(x) + b(x)(xn − 1).

Assume g(x) = gcd(p(x), xn − 1) ∈ Rqn . It is clear that

▶ for any c(x) ∈ ⟨p(x)⟩, g(x)|c(x)
▶ g(x) is the polynomial in ⟨p(x)⟩ that has the minimal degree

46 / 56

Generator Polynomial - Property

Proposition

Let C be a linear cyclic code of length n over Fq and g(x) be the

generator polynomial of C , namely, C = ⟨g(x)⟩. Then

▶ g(x) is monic and g(x)|xn − 1;

▶ a polynomial c(x) belongs to C if and only if g(x)|c(x)

47 / 56

Generator matrix of cyclic codes

Given a cyclic code C of length n with generator polynomial

g(x) = g0 + g1x + · · ·+ gn−k−1x
n−k−1 + xn−k ,

its generator matrix is given by

G =


g0 g1 g2 · · · gn−k−1 1

g0 g1 g2 · · · gn−k−1 1

g0 g1 g2 · · · gn−k−1 1
. . .

. . .
. . .

. . .

g0 g1 g2 · · · gn−k−1 1


k×n

48 / 56

Parity-check Polynomial

Given a cyclic code C of length n with generator polynomial

g(x) = g0 + g1x + · · ·+ gn−k−1x
n−k−1 + xn−k ,

its parity-check polynomial is defined as

h(x) = (xn − 1)/g(x).

▶ A codeword c(x) in C if and only if

c(x)h(x) ≡ 0 mod (xn − 1).

49 / 56

Relating h(x) and C⊥

Let h(x) = h0 + h1x + · · ·+ hk−1x
k−1 + hkx

k (with hk = 1) be a

parity-check polynomial for a code C . Then a parity-check matrix

of C is

H =


1 hk−1 hk−2 · · · h1 h0

1 hk−1 hk−2 · · · h1 h0

1 hk−1 hk−2 · · · h1 h0
. . .

. . .
. . .

. . .

1 hk−1 hk−2 · · · h1 h0


Ex. 5

Verify that the matrix H defined above indeed satisfies GH⊺ = 0

for the generator matrix G derived from the generator polynomial

g(x) of a cyclic code C .

50 / 56

Quasi-Cyclic Codes

One direction of generalizing cyclic codes:

Definition

A linear block code C of length n = mℓ over a finite field Fq is

called a quasi-cyclic code of index l if

c = (c0, . . . , cn−1) ∈ C ⇒ c ′ = (cn−ℓ, . . . , c0, . . . , cn−ℓ−1) ∈ C

When ℓ = 1 a quasi-cyclic code reduces to a cyclic code

51 / 56

Example: The binary [6, 3] code with generator matrix

G =

 1 1 0 1 0 0

0 0 1 1 0 1

0 1 0 0 1 1


is a quasi-cyclic code with ℓ = 2.

To ease the visualization we can write the shifts as blocks,

G =

 11 01 00

00 11 01

01 00 11



52 / 56

For the previous code, if we group columns 1, 3, 5 and 2, 4, 6, we

get a matrix of the form  100 110

010 011

001 101


We see that this matrix consists of two submatrices, and both are

a 3× 3 circulant matrix.

53 / 56

In general, one can permutate the generator matrix of a

quasi-cyclic code to get a generator matrix consisting of ℓ circulant

submatrices: G = [G0,G1, . . . ,Gℓ−1] where each Gi is given by

Gi = rot(g0, g1, . . . , gm−1) =


g0 g1 · · · gm−1

gm−1 g0 · · · gm−2
...

...
. . .

...

g1 g2 · · · g0


Equivalent Definition

A linear block code with a generator matrix G of the above form

is a quasi-cyclic code.

Likewise, a quasi-cyclic code has a parity-check matrix of the form

H = [H0,H1, . . . ,Hℓ−1]

where Hj is a circulant matrix.

54 / 56

In particular, we will consider a special type of quasi-cyclic codes.

Systematic Quasi-Cyclic Codes

A systematic quasi-cyclic [mℓ,m] code of index ℓ and code rate

1/ℓ is a quasi-cyclic code with an (ℓ− 1)m × ℓm parity-check

matrix of the form:

H =


Im 0 · · · 0 H0

0 Im H1

. . .
...

0 · · · Im Hℓ−2


where H0,H1, . . . ,Hℓ−2 are circulant matrices

55 / 56

References i

F. MacWilliams and N. Sloane.

The Theory of Error-Correcting Codes.

North-holland Publishing Company, 2nd edition, 1978.

T. K. Moon.

Error Correction Coding: Mathematical Methods and

Algorithms.

John Wiley & Sons, 2nd edition, 2020.

56 / 56

	Algebra Structures
	Finite Fields
	Linear Block Codes
	Basics of Linear Codes
	Encoding and Decoding

	Cyclic and Quasi-Cyclic Codes
	Polynomial Representation of Cyclic Codes
	Correspondence between vector space and quotient ring
	Cyclic codes - Ideas

