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1/56



Algebra Structures



Algebra Structures

Algebraic Structure (S,0)

A set S with certain arithmetic operations “®"

SxS =S
(X,', Xj) = X O Xj

satisfying certain laws .
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Algebra Structures - Group

Group (G, ®)
A set G with an arithmetic operation ® on elements in G
satisfying the following four laws :

» closure: x® y € G for any x,y € G;

> associative: (x®y)®z=x® (y ® z);

» identity element: 3/ € G such that x® | = | ® x = x;
> inverse element: Jy € Gsuchthat x®y =y ®x = 1.

G is a cyclic group if G = (g) = {/,g,g2,--- ,}, where g is
called a generator of G;
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Algebra Structures - Group

Group (G, ®)
A set G with an arithmetic operation ® on elements in G
satisfying the following four laws :

» closure: x® y € G for any x,y € G;

> associative: (xQy)®z=xQ (y® z);

> identity element: 3/ € G such that x® | = | ® x = x;
> inverse element: Jy € G suchthat x®@y =y @ x = I.
G is a cyclic group if G = (g) = {/,g,g%,--- ,}, where g is
called a generator of G;

Ex. 1: Which is a group?

> ({0,1,2,3},+), (N, +), (Z,+), (2, x);
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Algebra Structures - Ring

Ring (R, ®,®)
A set R with two arithmetic operations ® and @ on elements in
G satisfying the following laws :

> (R,®) is a group and x ® y = y @ x (Abelian Group)
» for multiplication ®:

» closure: x® y € R;
> associative: (x®y)®z=x® (y® z);

» distributive: x® (y ®z) = (x®y) d (x® z)
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Algebra Structures - Ring

Ring (R, ®, ®)
A set R with two arithmetic operations ® and @ on elements in
G satisfying the following laws :

» (R,®) is a group and x @y = y @ x (Abelian Group)
» for multiplication ®:

» closure: x® y € R;
> associative: (x®y)®z=x® (y ® z);

» distributive: x®@ (y®z)=(x®y) D (x® z)

Example (Rings we have learned)
» Integer Ring (Z,+, x);
> Polynomial Ring (P, +,®) with P = {>"; aix' : a; € Z};
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Algebra Structures - Field

Field (F,®,®)

A set F with two arithmetic operations ® and & on elements in
F satisfying the following laws :

» (R,®) is an Abelian group;

» (R\ {0},®) is also an Abelian group;

> x@(y®z)=(x®y)®(x®2)
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Algebra Structures - Field

Field (F,®,®)

A set F with two arithmetic operations ® and & on elements in
F satisfying the following laws :

» (R,®) is an Abelian group;

» (R\ {0},®) is also an Abelian group;

> x@(y®2z)=(x®y)®(x®2)

Example
» Is (Z,+, x) or (Zn,+, x) a field?
» Number Fields: (R, +, x) (Infinite number of elements)

Ex. 2

Give a few more examples of fields
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Algebra Structures - Field

Example
» Is (Z,+, x) or (Zn,+, %) a field?

» Number Fields: (R, +, x) (Infinite number of elements)

Ex. 2

Give a few more examples of fields
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Algebra Structures Hierarchy - Group, Ring, Field

Al - Closure
A2 - Associative
A3 - Identity element

A4 - Inverse element

A5 - Commutativity of Addition

M1 - Closure under multiplication
M2 - Associativity of multiplication
M3 - Distributive

M4 - Commutativity of multiplication
M5 - Multiplicative Identity

M6 - No Zero Divisors

M7 - Multiplicative Inverse
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Finite Fields



Finite Fields F .

Existence of Finite Fields

Finite fields exist iff. they contain p” elements for a prime p.

Construction of Finite Fields

» n=1,7Z,=1{0,1,2,--- ,p— 1} with (+, x) is a field;
» (Zp,+) is an abelian group;
» (Zp, x) is also an abelian group:
VxeZ, 3y ecZyst xy=1 mod p since (x,p) =1
» The binary case p = 2 is of particular interest
» the addition in GF(2) = {0,1} is the logic XOR
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Finite Fields F .

» Integer Ring (Z,+, %)

» prime p € Z: divisible only by 1 and itself;
> a=b mod piff. p|(a—b)
» The ring Z modulo a prime p yields F;
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Finite Fields F .

» Integer Ring (Z,+, x)
» prime p € Z: divisible only by 1 and itself;
> a=b mod piff. p|(a—b)
» The ring Z modulo a prime p yields F;
» Poly. Ring (Zp[x], +, x), Zplx] = {>_;aix" : ai € Zp}
» irreducible poly. f(x): “prime” in Zp[x];
> g1(x) = g2(x) mod £(x) iff. £(x)|(81(x) — g2(x)
» Zp[x] modulo an irreducible poly f(x) of degree n yields F»
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Finite Fields F .

Unique Representation

Let f(x) be an irreducible poly. of degree n in Fp[x].

Fon = IF‘p[x]/(f(x)) - {ia,XQ ai € IFP}
i=0

> a(x) @ b(x) = Y75 (a @ bi)x' = c(x) = X755 eix!
> a(x) ® b(x) = a(x)b(x) mod f(x) = c(x) = 315 cix’

a(x)=ap_1x" 14 +ax+ag+—a=(an-1, - ,a1,0)
> ad b+ a(x)®b(x)=c(x) < c=(co, " ,Cn1)
> a® b+ a(x) ® b(x) = c(x) <> c=(co, ** ,Cn1)
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001
010
011

101
110
111

001
010
011

101
110
111

2+1
Pax
2rx+l

Table 4.7 Polynomial Arithmetic Modulo (x* + x + 1)

(a) Addition
000 001 010 o1 100 101 110 111
0 1 x x+1 2 2+1 X4x Lx+l
0 1 x x+1 2 241 X +x P+x+l
1 0 x+1 x 241 X2 Pax+l 2hx
X x+1 0 1 X +x 2+x+l X 2+1
x+1 x 1 0 2ax+1 2+x 241l 22
2 2+l 2+x 2+x+1 0 1 X x+1
241 2 Bax+1 Z+x 1 0 x+1 x
X4x Xax+l 2 2+l X x+1 0 1
Pax+l 24x 2+ 5 x+1 = 1 0
(b) Multiplication
000 001 010 o011 100 101 110 111
0 1 x x+1 X2 241 P+ Lx+l
0 0 0 0 0 0 0 0
0 1 x x+1 x2 241 2ax 2rx+l
0 X 2 2 +x x+1 1 2x+1 2+1
0 x+1 24x 241 P4x+] a2 1 x
0 &2 x+1 Xrx+l X+x X 24l 1
0 2+l 1 a2 x ax+l x+1 2ax
0 Zax Pax+l 1 241 x+1 X 2
0 Xrx+l 241 x ! 2ax 2 x+1
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Finite Fields .

©

Ex. : Complete the following arithmetic

» (1,0,0,1) ®(1,1,0,0); (1,0,1,1) ®(1,0,0,1);
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Properties of Finite Fields

For a finite field F,» generated from a primitive poly. f(x) of
degree n and a root «, we have

» [ is a cyclic multiplicative group generated by «

» the factorization
p"—2
xP" — x = H (x —B8)=x H(X—o/)
BEF j=0

» all linear maps from F,» to IF, are given by the trace function
Tr(ax) with a € Fpn, where

n—1

Tr(x) =x+xP+-.-+x°

Ex. 4
Prove that Tr(/3) belongs to F,, for any 5 € Fp»
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Vector Space

Suppose F is a field with addition + and multiplication -

Vector Space over F

Suppose F” is the set of all n-tuples over F, i.e.,
F" = {x = (x0,x1, .-, Xn—1)|x; €F, 1 <i < n}.

Then F” forms a vector space V = (F", 4, F), which, for any
x,y € F" and c € F, satisfies

> x+y=(X0+ Yo, X1t + Y15+ Xnp—1 + Yn—1) € F”

» c-x=(cxp,cx1,...,Cxp—1) € F"

A vector space over V = (F”, +,F) is an additive group allowing
for scalar product
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Basis
A group of n elements ag,...,a, in F" is called a basis of F” if
they are linearly independent over F. Moreover,

n
F" = {Zc,—a,-|c1,...,cn€]F}
i=1
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Subsapce

For a vector space V = (F",+,F), a subset S C V is a linear
subspace of V if for any x,y € S and c € F,

> x+yeSandc-xe$S

If S can be generated by k linearly independent aj, ..., ak as
k
SIE {ZC;O(,“CL...,C,,EF},
i=1
then S has dimension k with a basis aq, ..., k.

We are mainly interested in [F as finite fields IF; in the context of
coding theory and cryptography.
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Linear Codes for Error Correction

When the vector space Fg is equipped with a certain metric of
distance, it brings error-correcting capability.

X

x‘l’lﬂ
X xdac
Channel . Channel Noise — Channel
Encoder Decoder
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Linear Codes for Error Correction

When the vector space Fg is equipped with a certain metric of
distance, it brings error-correcting capability.

X )(‘M
X xdac
I Encoder Decoder

» Encoder: message of length kK = codeword of length n
» Decoder:
» receive a noisy word: transmitted codeword + noise
» identify the transmitted codeword by the maximum likelihood
(ML) strategy, which often reduces to nearest neighbor or
majority voting
16 /56



Linear Codes with the Hamming metric

The Hamming weight of x € F is
wt(x) =[{1<i<n:x #0}.
The Hamming distance between x, y € Fg is defined as
d(x,y) = wt(x —y).

Linear Codes

An [n, k, d]4 linear code C is an Fy-subspace of Fy with

» dimension k

» minimum distance/weight d, namely,

in d = mi t(c) = d.
cl;?clznec (x:¥) o;rénclgcw (c)
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Generator and Parity-Check Matrices

Generator Matrix
Given an [n, k] linear code C, its generator matrix is
a k x n matrix whose k rows form a basis of C

» each basis of C yields a genertor matrix of C

» each codeword ¢ = mG for some message m € IFZ
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Parity-Check Matrix

An [n, k] linear code C can be seen as a solution space of a
system of linear equations xHT = 0, where H is an (n — k) x n
matrix with rank n — k, and is called the parity-check matrix of C

» cHT =0 for any ¢ € C;
» GHT = Oy (n—k) since cHT = mGHT =0 for any m € Fg
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Systematic Generator and Parity-Check Matrix

For an [n, k] linear code C, all generator matrix can be reduced to
a systematic generator matrix of the form

G = [Ik|P]

Correpondingly, the systematic parity-check matrix of C has the
form
H= [_PT|I(n—k)]

where [; is the t x t identity matrix

It is clear that

GHT™ = [Ik, Piex(n—i)] - [= P75 ltn—kyx (n—k)]T = 0

20/56



Example. Find the systematic genertor matrix and parity-check
matrix for

C = {0000000,1111111,1000101, 1100010,
0110001, 1011000, 0101100, 0010110,
0001011,0111010,0011101, 1001110,
0100111,1010011,1101001,1110100}
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Dual Codes

For an [n, k, d]q linear code, its dual code is defined as follows:

n
Ct={xe Falx-c= Zx,-c,- = (U}
i=1

Properties of Dual Code

» C- has dimension n — k

» a generator matrix of C* is a parity-check of C, i.e.,
Ct={mH|me Fg*k, H is a parity-check matrix of C}

» a parity-check matrix of C' is a generator of C
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Advantages of Linear Codes

» more efficient to compute the minimum distance
» easy to encode messages with generator matrices

» could allow for efficient decoding
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Encoding for Linear Codes

Given a generator matrix G of an [n, k] linear code, the encoding

process is given by

m—m- G, foranymeIFg

E.g.: the binary (7,4,3) Hamming code with generator matrix

1000110
0100101
0010011
0001111

A message 0110 encoded as 0110110

24 /56



Decoding for Linear Codes

Given a received word r = ¢ + e, try to recover the original
codeword c.

Nearest Neighbor Decoding
Given a received word y, find a codeword ¢ € C closest to y:

¢ = argmin,ccd(c, )

» a naive method: test all codewords ¢ € C, complexity O(q¥)
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Let's try harder ...

Partition of Fg
Given an [n, k]q4 linear code C with parity-check matrix H, the
whole vector space Fg can be partitioned w.r.t H:

» cHT =0 for any c € C
> xHT =yHT iff x —y € C

» the standard array
Fg: CU(32+C)|_|"‘|_J(aqn—k+C)

where a4+ C ={a+c:c € C}is called a coset of C
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Example: For a (7,3) code, a generator matrix is

0111
G=|1011
1101

o O =
o = O

0
0
1
The codewords for this code are

row 1 OOOOOOOIOIIIIOO 1011010 1100110 1101001 1010101 0110011 0001111
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Table 3.1: The Standard Array for a Code

Row 1 0000000 | 0111100 1011010 1100110 1101001 1010101 0110011 0001111
Row 2 1000000 1111100 0011010 0100110 0101001 0010101 1110011 1001111
Row 3 0100000 | 0011100 1111010 1000110 1001001 1110101 0010011 0101111
Row 4 0010000 | 0101100 1001010 1110110 1111001 1000101 0100011 0011111
Row 5 0001000 | 0110100 1010010 1101110 1100001 1011101 0111011 0000111
Row 6 0000100 [ 0111000 1011110 1100010 1101101 1010001 0110111 0001011
Row 7 0000010 | 0111110 1011000 1100100 1101011 1010111 0110001 0001101
Row 8 0000001 0111101 1011011 1100111 1101000 1010100 0110010 0001110
Row 9 1100000 1011100 0111010 0000110 0001001 0110101 1010011 1101111
Row 10 1010000 1101100 0001010 0110110 0111001 0000101 1100011 1011111
Row 11 0110000 | 0001100 1101010 1010110 1011001 1100101 0000011 Orrennt
Row 12 1001000 1110100 0010010 0101110 0100001 0011101 1111011 1000111
Row 13 0101000 | 0010100 1110010 1001110 1000001 1111101 0011011 0100111
Row 14 0011000 | 0100100 1000010 I111110 1110001 1001101 0101011 0010111
Row 15 1000100 1111000 0011110 0100010 0101101 0010001 1110111 1001011
Row 16 1110000 1001100 0101010 0010110 0011001 0100101 1000011 111

» cach row is a coset of C

» the leading entry with smallest weight in each row is call the

coset leader

» Forany re F?, if re e+ C, then rHT = eHT =5
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Bounded-distance Decoding based on syndrome
Given a received word y = ¢ + e, calculte the syndrome

s=yHT = cH" + eHT = eHT

> make a syndrome table of e, eHT for all errors e with

wt(e) = t < L%J

» for y, find a match in the table such that yHT = eHT

» guess the codeword ¢ = y — e and check ¢cHT =0 7
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Example: the binary (7,4,3) Hamming code with parity-check

matrix
1101100

H = | 1011010
0111001
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A one-time look-up table:

e | 100000 | 0100000 | 0010000 | 0001000 | 0000100 | 0000010 | 000001
eHT 110 101 011 111 100 010 001

Suppose the received word y = 1100100 (from ¢ = 1101100 with 1
bit error). The receiver compute

1101100 |7

Hy™ = (1100100) | 1011010 | = (111).
0111001

This matches with the error e = 0001000. Then the decoded word
is ¢/ =y+e=1101100. DONE!

Ex. 4: Decode the following words
> (0111101, 1110110, 0011011
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Table 3.1: The Standard Array for a Code
Row 1 0000000 0111100 1011010 1100110 1101001 1010101 0110011 0001111
Row 2 1000000 1111100 0011010 0100110 0101001 0010101 1110011 1001111
Row 3 0100000 0011100 1111010 1000110 1001001 1110101 0010011 0101111
Row 4 0010000 0101100 1001010 1110110 1111001 1000101 0100011 0011111
Row 5 0001000 0110100 1010010 1101110 1100001 1011101 0111011 0000111
Row 6 0000100 0111000 1011110 1100010 1101101 1010001 0110111 0001011
Row 7 0000010 0111110 1011000 1100100 1101011 1010111 0110001 0001101
Row 8 0000001 0111101 1011011 1100111 1101000 1010100 0110010 0001110
Row 9 1100000 1011100 0111010 0000110 0001001 0110101 1010011 1101111
Row 10 1010000 1101100 0001010 0110110 0111001 0000101 1100011 1011111
Row 11 0110000 0001100 1101010 1010110 1011001 1100101 0000011 0111111
Row 12 1001000 1110100 0010010 0101110 0100001 0011101 1111011 1000111
Row 13 0101000 0010100 1110010 1001110 1000001 1111101 0011011 0100111
Row 14 0011000 0100100 1000010 1111110 1110001 1001101 0101011 0010111
Row 15 1000100 1111000 0011110 0100010 0101101 0010001 1110111 1001011
Row 16 1110000 1001100 0101010 0010110 0011001 0100101 1000011 1111111

Question
Given the standard array of C, can we decode errors e with

Hamming weight beyond one?
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The Main Problem in Coding Theory

A [n, k, d]q linear code should have

» large code rate k/n, and

» large relative distance d/n

Main Problem

» to optimize one of n, k, d for given values of the other two

» to design efficient decoding algorithms
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How to construct good codes?

P> a nontrivial research topic

» primary/direct constructions: from special objects in
algebra, combinatorics, geometry, etc.

» secondary constructions: manipulate good linear codes, e.g.

» extending: adding a parity symbol to each codeword

» truncating: removing symbols in fixed positions of all
codewords

» concatenating
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Concatenated Codes
The concatenated code C = C; % (; is a g-ary code given by

C = {(Cal,...,CaQ)’Cai € Cl,(Oé]_,...,O[n2) € Cz}

where

» C;is an (n1, M1, d1) g-ary code (inner code)

» G is an (np, My, da) Mj-ary code (outer code)

» there exists a 1-to-1 correspondence between the alphabet of
size My used in G, and codewords in C; (e.g., Ci is a [8,4]2

code and C; is a code over Fys )

The code C has parameters (nina, Ma, > didb).
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Cyclic and Quasi-Cyclic Codes




Brief Introduction

» Cyclic codes are in the center of interest of coding theory
» Cyclic codes of relatively small length have good parameters

» In the list cyclic codes of length 63 there are 51 codes that
have the largest known minimum distance for a given
dimension

» Binary cyclic codes are better than the GV bound for lengths
up to 1023

» Rich combinatorics is involved in the determination of the
parameters of cyclic codes
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Cyclic Shift

The cyclic shift of a word ¢ = (cp, ¢1,- -+ ,¢cn—1) € [Fg is defined by

U(C) = (Cn—17 C07 e 7Cn—2)-

The cyclic shift defines a linear map o : Fg — Fg. The i -fold
composition o/ = g o --- 00 is the i-fold forward shift

Cyclic Codes
An Fg-linear code C of length n is called cyclic if

o(c) € C forany c € C.

In other words, cyclic codes are invariant under ¢’ for all / > 0
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Example - 1

Consider the binary [7,4, 3] Hamming code C with generator

matrix

o = O O
= O O O

1
0
1
1

== = O

1
1
0
1

o O O =
o O = O

The codewords are

0000000, 1000110, 0100101, 1100011,
0010011,1010101, 0110110, 1110000,
0001111,1001001, 0101010, 1101100,
0011100,1011010,0111001,1111111

The 3rd row’s shift 0100110 is not in C. Hence the Hamming code

is not cyclic.
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Example - 1 (cont)

After a permutation of the columns (1265734) and a row operation

of G we get the generator matrix G’ of the code C’:

10001
01001
00100
00011

1
0
1
1

= = =)

o O O =

O O = O

O = O =

1
1
0
1

O = = O

0
0
1
1

= O O O

In this case, every row of G’ is a circular shift of the first row.

Note: C is not cyclic, but its equivalence C’ is a cyclic code
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Dual code
The dual of a cyclic code is again cyclic
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Dual code
The dual of a cyclic code is again cyclic

Proof. Let C be a cyclic code. Then o(c) € C for all c € C. So
" Yc)=(c1, - ,cn1,00) € C.

Let x € C*. Then the inner product of x and any codeword in C
is zero. Thus,

(0(x),c) = xp—100+ Xo€1 + -+ Xp—2Cn—1
Xo€1 + -+ Xp—2Cp—1 + Xp—1C0
= (x,0"(c)) =0.

That is, the inner product of o(x) and any ¢ € C is zero. Thus,
o(x) € Ct.
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Polynomial Ring R

Take u(x) = x" — 1 and define the quotient ring

Rer = Fqlxl/(u(x) = {055 ax’ | & € Fo
where x" = 1.

From x" = 1, we see that

(a0 + a1X + -+ + 3p_1X" 1) = ap_1 + apX + - -+ + 2p_ox" 7
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Correspondence between F; and R

Consider the map ¢ : Fg — Rgn defined by

¢(a) = d(co, c1, 1) = @l + aax + -+ + cpo1x" T = ¢(x).

Then ¢ is an 1-to-1 one mapping that satisfies

P(acs + Be2) = ag(a) + Bo(ca)

42 /56



Cyclic [7,4,3] Hamming code - 1

Consider the [7,4, 3] linear code C’ with the generator polynomial

G/

Il
o O O
o O = O
O = O O
= O O O
= =R O
O = = B
= R R O

The row corresponds to
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Ideals of Rings

Examples of Rings

» the integer ring Z;
» the polynomial ring Z[x] = {3, aix' | a; € Z}

Examples of Ideals

» the set nZ = {yn|y € Z};
> the set
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Proposition
Cyclic codes in Fg correspond 1-to-1 to ideals in Rgn by

(co,c1,+ y€n—1) <> ol + cax+ -+ cpo1x" !
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Ideals in Rg»

For the quotient ring

Rer = Fqlxl/(u(x)) = {755 aix’ | & € Fo
its ideal can be given by certain polynomial p(x) € Rgn as
(p(x)) = {p(x)a(x) : a(x) € Ry}
indicating that for any c(x) € (p(x)), one has
c(x) = a(x)p(x) + b(x)(x" — 1).
Assume g(x) = ged(p(x),x" — 1) € Rgn. It is clear that

> for any c(x) € (p(x)), g(x)[c(x)
» g(x) is the polynomial in (p(x)) that has the minimal degree
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Generator Polynomial - Property

Proposition
Let C be a linear cyclic code of length n over Fq and g(x) be the
generator polynomial of C, namely, C = (g(x)). Then

» g(x) is monic and g(x)[x" — 1;
» a polynomial c(x) belongs to C if and only if g(x)|c(x)
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Generator matrix of cyclic codes

Given a cyclic code C of length n with generator polynomial

g(x) =go+gix+ -+ grok1x" K14 x"K

its generator matrix is given by

& & & - 8nk-1 1
g 81 & gn—k-1 1
G = g &1 Jp) 500 8n—k—1 1
8o 81 &2 200 [ pegq Al

kxn
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Parity-check Polynomial

Given a cyclic code C of length n with generator polynomial
g(x)=go+agx+ -+ gnk1x" T+ x"7K,

its parity-check polynomial is defined as

h(x) = (x" —1)/g(x).

» A codeword c¢(x) in C if and only if

c(x)h(x) =0 mod (x" —1).
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Relating h(x) and C*

Let h(X) =hy+hx+---+ hk_lxk_l + thk (With h, = 1) be a
parity-check polynomial for a code C. Then a parity-check matrix
of Cis

1 hge1 hgo -+ h ho
1 her he—a - h ho
H = 1 her hea - hy  ho
1 heer he2 -+ h ho

Ex. 5
Verify that the matrix H defined above indeed satisfies GHT = 0
for the generator matrix G derived from the generator polynomial

g(x) of a cyclic code C.
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Quasi-Cyclic Codes

One direction of generalizing cyclic codes:

Definition

A linear block code C of length n = m/ over a finite field F is
called a quasi-cyclic code of index / if

c=(co,...,cn-1)€C=>c" =(chty..-,C0,---,Cnt-1) €C

When ¢ =1 a quasi-cyclic code reduces to a cyclic code
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Example: The binary [6, 3] code with generator matrix

11
G=10 0
01

o = O

1
1
0

= O O

0
1
1
is a quasi-cyclic code with £ = 2.

To ease the visualization we can write the shifts as blocks,

11 01 00
G=1]00 11 01
01 00 11
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For the previous code, if we group columns 1,3.5 and 2,4,6, we
get a matrix of the form

100 110
010 011
001 101

We see that this matrix consists of two submatrices, and both are

a 3 x 3 circulant matrix.
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In general, one can permutate the generator matrix of a
quasi-cyclic code to get a generator matrix consisting of £ circulant

submatrices: G =[Gy, Gy, ..., Gy_1] where each G; is given by
& &1 &m—1
G = rot(go, &1, -, 8m-1) = s g:o gm._2
& & 80

Equivalent Definition

A linear block code with a generator matrix G of the above form

is a quasi-cyclic code.

Likewise, a quasi-cyclic code has a parity-check matrix of the form
H = [Ho, H1, ..., Hi—1]

where H; is a circulant matrix.
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In particular, we will consider a special type of quasi-cyclic codes.

Systematic Quasi-Cyclic Codes

A systematic quasi-cyclic [mf, m] code of index ¢ and code rate
1/ is a quasi-cyclic code with an (¢ — 1)m x ¢m parity-check
matrix of the form:

ln, 0 --- 0 Hy
0 In Hy
H= _
0 S
where Hgy, Hy, ..., Hy;_> are circulant matrices
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